+0  
 
+1
121
2
avatar+1317 

Help me Please

 

Solve the Systems of equations

 

{x+y=5}

{x2+y2=13}

ManuelBautista2019  Mar 6, 2018

Best Answer 

 #1
avatar+7155 
+3

x + y  =  5     Subtract  y  from both sides of this equation.

x  =  5 - y      Use this value of  x  in the second equation.

 

x2 + y2   =  13

(5 - y)2 + y2   =  13

(5 - y)(5 - y)  +  y2   =  13

25 - 10y + y2  +  y2   =  13

25 - 10y + 2y2   =  13              Subtract  13  from both sides of the equation.

12 - 10y + 2y2   =  0                Rearrange.

2y2 - 10y + 12   =  0                Divide through by  2 .

y2 - 5y + 6   =   0                     Factor left side.

(y - 3)(y - 2)  =  0                      Set each factor equal to zero.

y - 3  =  0     or     y - 2  =  0

y  =  3          or     y  =  2

 

Use both of these values of  y  to find  x .

 

When   y  =  3 ,   x  =  5 - y  =  5 - 3  =  2

 

When   y  =  2 ,   x  =  5 - y  =  5 - 2  =  3

 

So...

 

One solution is   x = 2   and   y = 3

Another solution is   x = 3   and   y = 2

 

The solution set is  { (2, 3), (3, 2) }

hectictar  Mar 6, 2018
 #1
avatar+7155 
+3
Best Answer

x + y  =  5     Subtract  y  from both sides of this equation.

x  =  5 - y      Use this value of  x  in the second equation.

 

x2 + y2   =  13

(5 - y)2 + y2   =  13

(5 - y)(5 - y)  +  y2   =  13

25 - 10y + y2  +  y2   =  13

25 - 10y + 2y2   =  13              Subtract  13  from both sides of the equation.

12 - 10y + 2y2   =  0                Rearrange.

2y2 - 10y + 12   =  0                Divide through by  2 .

y2 - 5y + 6   =   0                     Factor left side.

(y - 3)(y - 2)  =  0                      Set each factor equal to zero.

y - 3  =  0     or     y - 2  =  0

y  =  3          or     y  =  2

 

Use both of these values of  y  to find  x .

 

When   y  =  3 ,   x  =  5 - y  =  5 - 3  =  2

 

When   y  =  2 ,   x  =  5 - y  =  5 - 2  =  3

 

So...

 

One solution is   x = 2   and   y = 3

Another solution is   x = 3   and   y = 2

 

The solution set is  { (2, 3), (3, 2) }

hectictar  Mar 6, 2018
 #2
avatar+1317 
+2

Thanks Hect

ManuelBautista2019  Mar 6, 2018

3 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.