We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
162
3
avatar

Find the sum of all integral values of \(c\) with \(c\le 25\) for which the equation \(y=x^2-7x-c\) has two rational roots.

 Jul 19, 2019
 #1
avatar+23575 
+1

Find the sum of all integral values of \(c\) with \(c\le 25\) for which the equation \(y=x^2-7x-c\) has two rational roots.

 

\(\begin{array}{|lrcll|} \hline & x^2-7x-c &=& 0 \\ & x &=& \dfrac{7\pm \sqrt{49-4(-c)}}{2} \\\\ & x &=& \dfrac{7\pm \sqrt{49+4c}}{2} \\\\ \text{Two rational roots} & 49+4c &>& 0 \\ & 4c &>& -49 \\ & c &>& -\frac{49}{4} \\ & \mathbf{ c } &>& \mathbf{-12.25} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \text{Integral values} & c &=& \{ -12,\ -11,\ -10,\ \ldots \ ,\ -1,\ 0,\ 1,\ \ldots \ ,\ 25\} \\\\ \text{The sum of all integral values of $c$ with $c\le 25$} & &=& \left(\dfrac{-12+25}{2}\right)\cdot (25+13) \\ & &=& \dfrac{13\cdot 38}{2} \\ & &=& \mathbf{247} \\ \hline \end{array} \)

 

laugh

 Jul 19, 2019
 #2
avatar
0

That's wrong. crying The right answer is \(-2.\)

.
 Jul 19, 2019
 #3
avatar+105484 
+2

y = x^2  - 7x  - c

 

This will have two rational roots  when the discriminant  is a perfect square > 0

 

So 

 

7^2  + 4c > 0

49  + 4c > 0

 

 

And   49 + 4c   will be a perfect square > 0  when   c  =  -6 , -10, -12, 0,  8, 18

 

So....the sum of the possible values of  c  =  -28 + 26   =   - 2

 

 

 

cool cool cool

 Jul 19, 2019

18 Online Users

avatar
avatar
avatar