+0  
 
0
33
3
avatar+344 

 

 

cerenetie  Sep 29, 2018
 #1
avatar+93604 
+2

It would be good if another mathematician checks this.  I think it is ok. 

Heureka taught me just a little while ago.

 

 

Find the coefficient of   \(a^4b^4\)   in the expansion of   \((\frac{a^2}{3}-2b)^6\)

 

what you need first is the coefficient of      \((\frac{a^2}{3})^2\;(-2b)^4\)

 

it will be      \(\frac{6!}{2!4!}=15\) 

 

so we have       \(15\cdot (\frac{a^2}{3})^2\;(-2b)^4\)

 

 

\(15\cdot (\frac{a^2}{3})^2\;(-2b)^4\\ =15\cdot (\frac{a^4}{9})\;\cdot 16b^4\\ =5\cdot (\frac{a^4}{3})\;\cdot 16b^4\\ =\frac{80}{3} a^4b^4\\ \)

 

so the coefficient is      \(\frac{80}{3}\)

Melody  Sep 29, 2018
 #2
avatar+2248 
+1

This looks good to me!

TheXSquaredFactor  Sep 29, 2018
 #3
avatar+93604 
0

Thank you   laugh

Melody  Sep 30, 2018

32 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.