We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
349
6
avatar+846 

Help me with this maths question plz also explain why thanks

https://snag.gy/NiUh6u.jpg

 Jan 6, 2018

Best Answer 

 #1
avatar+8439 
+1

 

m∠RAB   =   160° - 90°   =   70°

m∠ABR   =   360° - 90° - 220°   =   50°

m∠ARB   =   180° - 70° - 50°   =   60°

m∠TAR   =   180° - 160°   =   20°

 

Now we can use the law of sines to find the length of AR .

 

\(\frac{AR}{\sin 50°}\,=\,\frac{12}{\sin60°} \\~\\ AR\,=\,\frac{12\sin50°}{\sin60°}\)

 

Now we can use the law of cosines to find the length of TR.

 

\(TR^2\,=\,AT^2+AR^2-2(AT)(AR)\cos20° \\~\\ TR^2\,=\,5^2+(\frac{12\sin50°}{\sin60°})^2-2(5)(\frac{12\sin50°}{\sin60°})\cos20° \\~\\ TR^2\,=\,25+\frac{144\sin^250°}{\sin^260°}-\frac{120\sin50°\cos20°}{\sin60°} \)

                                                                                 Take the positive sqrt of both sides.

\(TR\,=\,\sqrt{25+\frac{144\sin^250°}{\sin^260°}-\frac{120\sin50°\cos20°}{\sin60°}} \\~\\ TR\,\approx\,6.158\quad\text{km}\)

.
 Jan 6, 2018
edited by hectictar  Jan 6, 2018
 #1
avatar+8439 
+1
Best Answer

 

m∠RAB   =   160° - 90°   =   70°

m∠ABR   =   360° - 90° - 220°   =   50°

m∠ARB   =   180° - 70° - 50°   =   60°

m∠TAR   =   180° - 160°   =   20°

 

Now we can use the law of sines to find the length of AR .

 

\(\frac{AR}{\sin 50°}\,=\,\frac{12}{\sin60°} \\~\\ AR\,=\,\frac{12\sin50°}{\sin60°}\)

 

Now we can use the law of cosines to find the length of TR.

 

\(TR^2\,=\,AT^2+AR^2-2(AT)(AR)\cos20° \\~\\ TR^2\,=\,5^2+(\frac{12\sin50°}{\sin60°})^2-2(5)(\frac{12\sin50°}{\sin60°})\cos20° \\~\\ TR^2\,=\,25+\frac{144\sin^250°}{\sin^260°}-\frac{120\sin50°\cos20°}{\sin60°} \)

                                                                                 Take the positive sqrt of both sides.

\(TR\,=\,\sqrt{25+\frac{144\sin^250°}{\sin^260°}-\frac{120\sin50°\cos20°}{\sin60°}} \\~\\ TR\,\approx\,6.158\quad\text{km}\)

hectictar Jan 6, 2018
edited by hectictar  Jan 6, 2018
 #2
avatar+101898 
+1

Nice, hectictar.....!!!

 

 

cool cool cool

 Jan 6, 2018
 #3
avatar+8439 
+1

Thanks CPhill!! That is weird...is the picture blocked for you? I don't think it was blocked last night!

 Jan 6, 2018
 #4
avatar+101898 
+1

Yep......blocked for me as well.......odd  !!!

 

cool cool cool

 Jan 6, 2018
 #5
avatar+101898 
+1

It has suddenly reappeared......ghosts in the machine....maybe????

 

cool cool cool

 Jan 6, 2018
 #6
avatar+8439 
+1

LOL! I just tried re-uploading it...seemed to work!  laughlaugh

hectictar  Jan 6, 2018

10 Online Users

avatar
avatar
avatar