Solve for n:
sqrt(20)+sqrt(500)+sqrt(80)=nsqrt(5) factor the LHS as follows:
sqrt(4x5) + Sqrt(100x5) + sqrt(16x5) =nsqrt(5)
2sqrt(5) + 10sqrt(5) + 4sqrt(5) = nsqrt(5) factor sqrt(5) on the LHS
sqrt(5)(4+10+2) =nsqrt(5) divide both sides by sqrt(5)
n =2+10+4
n=16
n=16
sqrt(20)+sqrt(500)+sqrt(80)=nsqrt(5)
Switch around terms
n*sqrt{5}=sqrt{20}+sqrt{500}+sqrt{80}
Find radicals of sqrt{20}, sqrt{500} and sqrt{80}
sqrt{20}= 2 sqrt{5}
sqrt{500} = 10 sqrt{5}
sqrt{80} = 4 sqrt{5}
Then add radicals together
n*sqrt{5}=16sqrt{5}
Divide by sqrt{5}
n=16