+0  
 
0
52
2
avatar

Hello! I am having a difficult time with these questions. I don't understand them very well. Please help! I apologize for taking up your time. Please show the work because I have other questions similar to these and I would like to work on the other ones myself.  Thank you!

Guest Sep 12, 2018
 #1
avatar+91065 
+1

DC  = BC  ...  thus... they will  both be  =  DB  / √2    [ the diagonal of a square is always √2 * side length ....so...the side length  =  diagonal / √2  ]

 

So

If  DB  = 4  then   DC = BC  = 4 / √2  = [ rationalize the denominator] = 4√2 / 2 = 2√2...so...false

 

If DB  = 14  then DC = BC  =  14 / √2   =  [rationalize the denominator]  =  14 * √2  / [ √2 * √2 ] =

14√2 / 2   =  7√2....so......this is true

 

If DB  = 4√2  then DC = BC  =  4√2 / √2  =  4....so....true

 

If DB  = √10  then DC = BC  = √10 /√2   =  √5   ....so...true

 

If DB = 15 then  DC = BC  =  15 / √2  =  15√2 / 2.....so true

 

If DB  = √5 then  DC = BC  = √5 / √2   =   √5 * √2  / 2  =  √10 / 2...so....false

 

 

cool cool cool

CPhill  Sep 12, 2018
 #2
avatar+91065 
+1

Second one :

 

Put these  in the form   ax^2  + bx + c  = 0

 

The discriminant  is given by   [ b^2 - 4ac ]...if this is > 0, we will have two real roots

 

3x^2 - 4x + 7  =  0

discriminant  =  (-4)^2 - 4(3)(7)  =  16 - 84  ....not > 0....so...no two real roots

 

1x^2 - 2x + 8  = 0

discriminant  =  (-2)^2 - 4(1)(8)  =  4 - 32  ....not > 0...so....no two real roots

 

5x^2 + 6  =  0

discrimant  =  (0)^2  - 4(5)(6)  = - 120  ....not > 0....no real roots

 

4x^2  - 9  = 0

discriminant  =  (0)^2 - 4(4)(-9)  = 36 > 0  ....  so....two real roots

 

 

2x^2 + 3x  - 4  = 0

discriminant = (3)^2  - 4(2)(-4)  =  9 + 32  > 0...so...two real roots

 

1x^2 - 5x - 3  = 0

discriminant =  (-5)^2 - 4(1)(-3)  = 25 + 12  > 0....so.....two real roots

 

 

 

cool cool cool

CPhill  Sep 12, 2018

21 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.