+0  
 
0
842
2
avatar+195 

1)An equilateral triangle has an area of 64sqrt3 cm^2 . If each side of the triangle is decreased by 4 cm, by how many square centimeters is the area decreased?

 

2) In triangle ABC ,  AB= AC=5 and BC=6. Let O be the circumcenter of triangle ABC. Find the area of triangle OBC .

 May 4, 2018
 #1
avatar
0

1) The side length of the original equiateral triangle is 12, so the area is decreased by 20*sqrt(3) cm^2.

 

2) The circumradius is 4, so the area of OBC is 3*sqrt(7).

 Nov 21, 2019
 #2
avatar+129928 
+1

2.    Using the Law of Cosines

 

6^2 = 5^2  + 5^2  - 2 (5)(5) cos BAC

 

36 = 50 - 50 cos BAC

 

[36 - 50]

_______     = cos BAC

     -50

 

14

___  =  cos BAC

50

 

 7

__  =  cos BAC

25

 

So  sin BAC  =  24 / 25

 

And angle  BOC  = twice angle BAC

 

So

 

cos (2 * BAC)  = cos (BOC) =   1 - 2sin^2 (BAC)

 

cos (BOC)  = 1 - 2 (24/25)^2  =   1 - 2 ( 576/625)  =  [ 625 - 2(576) ] / 625  = -527/625

 

And using the Law of Cosines again

 

6^2  =  r^2 + r^2  - 2(r)(r) cos (BOC)

 

36 = 2r^2 - 2r^2 [ -527 / 625 ]

 

36 = 2r^2  [ 1 + 527/625 ]

 

18  = r^2 [ 1 + 527/625 ]

 

18 = r^2  [1152 /625 ]

 

r^2 =  [625 * 18 ] / 1152

 

r^2  = 11250 / 1152

 

r^2 =  625 / 64

 

r = 25/8  = the circumradius

 

So   the semiperimeter of triangle   BOC  is   [ 25/8+ 25/8 + 6 ]/2   =  49/8

 

So...using Heron's Formula....the area of BOC is

 

sqrt  [ (49/8) ( 49/8 - 25/8) (49/8 - 25/8) (49/8 - 6) ]  =

 

sqrt [ (49/8) ( 24/8) (24/8) ( 1/8) ] =

 

(7 * 24 * 1)              168              21      

__________  =        ___    =     ___  =   2.625 units^2

   64                          64               8 

 

 

cool cool cool

 Nov 21, 2019

1 Online Users

avatar