+0  
 
-1
58
1
avatar

with this Part 1: Multiple Choice

Find the discriminant of each quadratic equation then state the number and type of solutions.
1) $7 x^{2}-9 x=0$
2) $6 n^{2}+8 n+3=0$
A) 81 ; two real solutions
A) $-87$; two imaginary solutions
B) 121 ; two real solutions
B) $-8$; two imaginary solutions
C) 296 ; two real solutions
C) $-8$; two real solutions
D) 81 ; one real solution
D) 84 ; two real solutions

3) $2 x^{2}+8 x+8=0$

4) $-5 x^{2}-10 x-5=0$
A) 0 ; two imaginary solutions
A) $-175$; two imaginary solutions
B) 0 ; one real solution
B) 200 ; two real solutions
C) 65 ; two real solutions
C) 0 ; one real solution
D) 0 ; two real solutions
D) 0 ; two imaginary solutions

5) $\mathrm{f}(\mathrm{x})=x^{2}$ and $\mathrm{g}(\mathrm{x}) \mathrm{i}=(x+4)^{2}$, then $\mathrm{g}(\mathrm{x})$ is $\quad$ 6) $\mathrm{f}(\mathrm{x})=x^{2}$ and $\mathrm{g}(\mathrm{x})$ is $5 x^{2}$, then $\mathrm{g}(\mathrm{x})$ is $\mathrm{f}(\mathrm{x})$
$\mathrm{f}(\mathrm{x})$ shifted with $\mathrm{a}$
A) up 4
B) right 4
A) none of these
C) left 4
D) down 4
B) different vertex
C) vertical stretch
D) vertical compression

7) $\mathrm{f}(\mathrm{x})=x^{2}$ and $\mathrm{g}(\mathrm{x})$ is $x^{2}+4$, then is $\mathrm{f}(\mathrm{x})$

8) $\mathrm{f}(\mathrm{x})=x^{2}$ and $\mathrm{g}(\mathrm{x})$ is $(1 / 2) x^{2}$, then $\mathrm{g}(\mathrm{x})$ is shifted
A) left 4
B) down 4
C) right 4
D) up 4

A) vertical compression

B) none of these

C) different vertex

D) vertical stretch Part 2: Free Response (Write your answers on your paper)

Fill in the blanks.
9) $f(x)=-x^{2}+4 x-3$
10) $f(x)=2 x^{2}-12 x+16$

$x$ intercept(s)

axis of

symmetry

x intercept(s)  axis of  symmetry 


State the vertex of each function, and the value of a, and which way the parabola of

State the vertex of each function, and the value of a, and which way the parabola opens (up or down).
11) $y=(x+4)^{2}+1$
Vertex
12) $y=(x-3)^{2}+2$

Value of a

Opens

13) $y=2 x^{2}+16 x+34$

Vertex

Vertex

Value of a

Opens

Vertex

 

Value of $a$ 14) $y=-x^{2}-2 x-4$ Value of $\mathrm{a}$

Opens
15) A golf ball is thrown off of the roof of a building. It's height $h(t)$ after $t$ seconds is modeled
the function $h(t)=-5 t^{2}+4 t+18$
What is the initial height of the golf ball?
Opens
15) A golf ball is thrown off of the roof of a

 Mar 15, 2022
 #1
avatar+1382 
+1

We aren't here to do your work for you. 

 

This is standard form: \(ax^2 + bx + c = 0 \) In the quadratic formula: \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) and \(b^2-4ac\) is the discriminant. If it is positive, there are 2 real solutions. If it is 0, there is 1 real solution. If it is negative, there are 2 imaginary solutions. 

 Mar 15, 2022

23 Online Users

avatar