+0  
 
0
286
3
avatar

Alright so i have a 2^(2/x) * 4^(x/6)* ((1/8)^(1/x))^(1/6)=2^2*2^(1/3) After several tries i got it wrong. The answer is x1=3 x2=-1/5

Guest May 27, 2014

Best Answer 

 #3
avatar+18827 
+8

 

$$\boxed{2^{\frac{x}{2}} * 4^{\frac{x}{6}}* \left[(\frac{1}{8})^{\frac{1}{x}}\right]^{\frac{1}{6}}=2^2*2^{\frac{1}{3}} }\\\\
\Rightarrow 2^{\frac{x}{2}} *2^{2*\frac{x}{6}}*2^{-3*\frac{1}{x}*\frac{1}{6}}=2^{2+\frac{1}{3}}\\\\
\Rightarrow 2^{\frac{x}{2}} *2^{\frac{x}{3}}*2^{\left(-\frac{1}{2x}\right)}=2^{\frac{7}{3}}\\\\
\Rightarrow 2^{
\left(\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}\right)
}=2^{\frac{7}{3}} \quad | \quad ln\\\\
\Rightarrow {
\left(\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}\right)*\ln(2)
}=\frac{7}{3}*\ln(2)\\\\
\Rightarrow {
\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}\right
}=\frac{7}{3}\\\\$$

$$\\\Rightarrow {
\frac{3x}{3x}*\frac{x}{2}+\frac{2x}{2x}*\frac{x}{3}
-\frac{3}{3}*\frac{1}{2x}\right
}=\frac{7}{3}\\\\
\Rightarrow \frac{3x^2+2x^2-3}{6x}=\frac{7}{3} \quad | \quad *6x\\\\
\Rightarrow 5x^2-3=6x*\frac{7}{3}\\
\Rightarrow 5x^2-3=14x\\$$

$$\\\Rightarrow 5x^2-14x-3=0\\\\
\Rightarrow x^2-\frac{14}{5}x-\frac{3}{5}=0\\\\
\Rightarrow x_{1,2}=\frac{14}{2*5}\pm\sqrt{\frac{14*14}{(2*5)*(2*5)}+\frac{3}{5}}\\\\
\Rightarrow x_{1,2}=\frac{14}{10}\pm\sqrt{\frac{14*14}{(10)*(10)}+\frac{20}{20}*\frac{3}{5}}\\\\
\Rightarrow x_{1,2}=\frac{14}{10}\pm\sqrt{\frac{196}{100}+\frac{60}{100}}\\\\
\Rightarrow x_{1,2}=\frac{14}{10}\pm\sqrt{\frac{196+60}{100}}\\\\
\Rightarrow x_{1,2}=\frac{14}{10}\pm\sqrt{\frac{256}{100}}\\\\
\Rightarrow x_{1,2}=\frac{14}{10}\pm\frac{16}{10}\\\\
\textcolor[rgb]{1,0,0}{x_1=}\frac{14}{10}+\frac{16}{10}=\frac{30}{10}=\textcolor[rgb]{1,0,0}{3}\\\\
\textcolor[rgb]{1,0,0}{x_2=}\frac{14}{10}-\frac{16}{10}=-\frac{2}{10}=\textcolor[rgb]{1,0,0}{-\frac{1}{5}}\\\\$$

heureka  May 28, 2014
Sort: 

3+0 Answers

 #1
avatar+2353 
+5

 

 

Okay, so here's what happened.

I wrote a 2/3 page answer solving the thing, after which I checked my answers.

My answers were wrong 

Then I used an equation solver to check your equation and it gave me 

$$x_1=0.716$$

$$x_2=6.28$$

Did you by any chance miswrite something in your equation?

 

Currently you have this;

$$2^{2/x} * 4^{x/6}* ((1/8)^{1/x})^{1/6}=2^2*2^{1/3}$$

reinout-g  May 27, 2014
 #2
avatar+9 
0

Oh sorry it was 2^(x/2), had to make an acount because i wasn't able do to the spamm security thing.

TreefAM  May 27, 2014
 #3
avatar+18827 
+8
Best Answer

 

$$\boxed{2^{\frac{x}{2}} * 4^{\frac{x}{6}}* \left[(\frac{1}{8})^{\frac{1}{x}}\right]^{\frac{1}{6}}=2^2*2^{\frac{1}{3}} }\\\\
\Rightarrow 2^{\frac{x}{2}} *2^{2*\frac{x}{6}}*2^{-3*\frac{1}{x}*\frac{1}{6}}=2^{2+\frac{1}{3}}\\\\
\Rightarrow 2^{\frac{x}{2}} *2^{\frac{x}{3}}*2^{\left(-\frac{1}{2x}\right)}=2^{\frac{7}{3}}\\\\
\Rightarrow 2^{
\left(\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}\right)
}=2^{\frac{7}{3}} \quad | \quad ln\\\\
\Rightarrow {
\left(\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}\right)*\ln(2)
}=\frac{7}{3}*\ln(2)\\\\
\Rightarrow {
\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}\right
}=\frac{7}{3}\\\\$$

$$\\\Rightarrow {
\frac{3x}{3x}*\frac{x}{2}+\frac{2x}{2x}*\frac{x}{3}
-\frac{3}{3}*\frac{1}{2x}\right
}=\frac{7}{3}\\\\
\Rightarrow \frac{3x^2+2x^2-3}{6x}=\frac{7}{3} \quad | \quad *6x\\\\
\Rightarrow 5x^2-3=6x*\frac{7}{3}\\
\Rightarrow 5x^2-3=14x\\$$

$$\\\Rightarrow 5x^2-14x-3=0\\\\
\Rightarrow x^2-\frac{14}{5}x-\frac{3}{5}=0\\\\
\Rightarrow x_{1,2}=\frac{14}{2*5}\pm\sqrt{\frac{14*14}{(2*5)*(2*5)}+\frac{3}{5}}\\\\
\Rightarrow x_{1,2}=\frac{14}{10}\pm\sqrt{\frac{14*14}{(10)*(10)}+\frac{20}{20}*\frac{3}{5}}\\\\
\Rightarrow x_{1,2}=\frac{14}{10}\pm\sqrt{\frac{196}{100}+\frac{60}{100}}\\\\
\Rightarrow x_{1,2}=\frac{14}{10}\pm\sqrt{\frac{196+60}{100}}\\\\
\Rightarrow x_{1,2}=\frac{14}{10}\pm\sqrt{\frac{256}{100}}\\\\
\Rightarrow x_{1,2}=\frac{14}{10}\pm\frac{16}{10}\\\\
\textcolor[rgb]{1,0,0}{x_1=}\frac{14}{10}+\frac{16}{10}=\frac{30}{10}=\textcolor[rgb]{1,0,0}{3}\\\\
\textcolor[rgb]{1,0,0}{x_2=}\frac{14}{10}-\frac{16}{10}=-\frac{2}{10}=\textcolor[rgb]{1,0,0}{-\frac{1}{5}}\\\\$$

heureka  May 28, 2014

10 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details