Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+2
1039
4
avatar

Can this identity be proven, and if so how?  π^2/6 = 1/6 (-i log(-1))^2  I thank you.

 Nov 27, 2017
 #1
avatar+26396 
+2

Can this identity be proven, and if so how?  π^2/6 = 1/6 (-i log(-1))^2

 

16(ilog(1))2log(z)=ln|z|+iarg(z)=arctan(ba)|z=a+bilog(1)=ln|1|+iarg(1)=arctan(01)=π|z=1+0ilog(1)=ln|1|+i(π)log(1)=ln(1)iπ|ln(1)=0log(1)=0iπlog(1)=iπ=16(i(iπ))2=16(i2π)2|i2=1=16(π)2=16π2=π26

 

laugh

 Nov 28, 2017
 #2
avatar
+1

Brilliant heureka, as usual. Thank you very much.

 Nov 28, 2017
 #3
avatar+9675 
+1

eiπ=1We can immediately imply thatlog(1)=iπ16(ilog(1))2=16(iiπ)2ii=1=16π2

Hence, proved.

 Nov 28, 2017
 #4
avatar
0

Max: You are simply beyond words !! Bravo and thanks.

 Nov 28, 2017

0 Online Users