Can this identity be proven, and if so how? π^2/6 = 1/6 (-i log(-1))^2 I thank you.
Can this identity be proven, and if so how? π^2/6 = 1/6 (-i log(-1))^2
\(\begin{array}{|rcll|} \hline && \frac{1}{6}\cdot \Big(-i \log(-1) \Big)^2 \\ && &\small{ \begin{array}{|rcll|} \hline \log(z) &=& \ln|z| + i\underbrace{\arg(z)}_{=\arctan(\frac{b}{a}) } \quad | \quad z = a+b\cdot i \\ \log(-1) &=& \ln|-1| + i\underbrace{\arg(-1)}_{= \underbrace{\arctan\left(\frac{0}{-1}\right)}_{=-\pi} } \quad | \quad z = -1+0\cdot i \\ \log(-1) &=& \ln|-1| + i\cdot(-\pi) \\ \log(-1) &=& \ln(1) - i\cdot \pi \quad | \quad \ln(1) = 0 \\ \log(-1) &=& 0 - i\cdot \pi \\ \log(-1) &=& - i\cdot \pi \\ \hline \end{array}} \\ &=& \frac{1}{6}\cdot \Big(-i \cdot(- i\cdot \pi) \Big)^2 \\ &=& \frac{1}{6}\cdot (i^2 \cdot \pi )^2 \quad | \quad i^2 = -1 \\ &=& \frac{1}{6}\cdot (-\pi )^2 \\ &=& \frac{1}{6}\cdot \pi ^2 \\ &=& \dfrac{\pi ^2}{6} \\ \hline \end{array}\)