We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
81
3
avatar

Hello! Would anyone be able to help me evaluate the definite integral of this problem:
 2 0[1/((sqrt1+x^3)) dx

Thank you!

 Mar 23, 2019
 #1
avatar+5172 
+2

\(\displaystyle \int_0^2 \dfrac{1}{\sqrt{1+x^3}}~dx\)

 

is that what you mean?

 Mar 23, 2019
 #2
avatar
0

yes!!!

Guest Mar 23, 2019
 #3
avatar+5172 
+2

It's a mess...

 

\(\displaystyle \int \dfrac{1}{\sqrt{1+x^3}}~dx = \\ \dfrac{2 \sqrt[6]{-1} \sqrt{-\sqrt[6]{-1} \left(x+(-1)^{2/3}\right)} \sqrt{(-1)^{2/3} x^2+\sqrt[3]{-1} x+1} F\left(\sin ^{-1}\left(\frac{\sqrt{-(-1)^{5/6} (x+1)}}{\sqrt[4]{3}}\right)|\sqrt[3]{-1}\right)}{\sqrt[4]{3} \sqrt{x^3+1}}\)

 

\(\displaystyle \int_0^2 \dfrac{1}{\sqrt{1+x^3}}~dx =2 \cdot \, _2F_1\left(\frac{1}{3},\frac{1}{2};\frac{4}{3};-8\right) \approx 1.40218\)

 

http://functions.wolfram.com/EllipticIntegrals/EllipticF/

 

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/

Rom  Mar 23, 2019

17 Online Users

avatar
avatar
avatar