Let \(g(x)\) be a function piecewise defined as \(g(x) = \left\{ \begin{array}{cl} -x & x\le 0, \\ 2x-41 & x>0. \end{array} \right.\)

If \(a\) is negative, find \(a\) so that \( g(g(g(10.5)))=g(g(g(a)))\)


I'm getting 10.5 but that can't be right. Also, I think the answer isn't a whole number.

DanielCai  Jun 27, 2018

DanielCai, obviously your answer of 10.5 cannot be right since \(a<0\). I would evaluate \(g(g(g(10.5)))\) one step at a time. 


\(g(x) = \left\{ \begin{array}{cl} -x & x\le 0, \\ 2x-41 & x>0. \end{array} \right.\) This is the function's definition. Now, let's evaluate \(g(10.5)\)
\(g(10.5)=2\cdot 10.5-41\\ \hspace{13mm}=21-41\\ \hspace{13mm}=-20\) Since \(10.5>0\), evaluate the bottom function.
\(g(-20)=-(-20)\\ \hspace{13mm}=20\) Since \(-20\leq0\), evaluate the top function.
\(g(20)=2\cdot 20-41\\ \hspace{10mm}=40-41\\ \hspace{10mm}=-1\) Since \(20>0\), evaluate the bottom function.


Now, let's do the same process with \(g(g(g(a)))\).


\(g(x) = \left\{ \begin{array}{cl} -x & x\le 0, \\ 2x-41 & x>0. \end{array} \right.\) This is the function definition.
\(g(a)=-a\) Since \(a\leq0\) was a set parameter given at the beginning of the problem, 
\(g(-a)=-2a-41\) Since multiplying a by -1 would make \(-a>0\), so evaluate it as the bottom fraction. 
\(g(-2a-41)=-(-2a-41)\\ \hspace{23mm}=2a+41\) \(g(-2a-41)=2(-2a-41)-41\\ \hspace{24mm}=-4a-82-41\\ \hspace{24mm}=-4a-123\)


I do not know if \(-2a-41>0\), so I have to consider both cases. 

Set these two cases equal to -1 and check both solutions. 


\(2a+41=-1\) \(-4a-123=-1\)
\(2a=-42\) \(-4a=122\)
\(a=-21\) \(a=-\frac{122}{4}=-\frac{61}{2}\)

When checking both solutions, only \(a=-\frac{61}{2}\) works. 

TheXSquaredFactor  Jun 27, 2018

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.