+0

# help (other answer was wrong. all of them)

0
176
2

Let u and v be the solutions to $3x^2 + 5x + 7 = 0.$. Find $\frac{u}{v} + \frac{v}{u}.$

______________________________________________________________________________________________________________

The roots of $7x^2 + x - 5 = 0$ are a and b. Compute $(a - 4)(b - 4).$

______________________________________________________________________________________________________________

The real numbers x and y are such that

\begin{align*}
x + y &= 4, \\
x^2 + y^2 &= 22, \\
x^4 &= y^4 - 176 \sqrt{7}.
\end{align*}

Compute x-y

_______________________________________________________________________________________________________________

The roots of $x^2 + 5x + 3 = 0$

are p and q, and the roots of  $x^2 + bx + c = 0$ are $p^2$ and $q^2.$. Find b+c.

Mar 10, 2021

#1
0

Try using Vieta!

Mar 10, 2021
#2
0

For the first problem, where u and v are the roots, u + v = -5 and uv = 7 by Vieta.  Then

u/v + v/u = (u^2 + v^2)/(uv) = 11/7.

For the second problem, a + b = -1 and ab = -5.  Then

(a - 4)(b - 4) = ab - 4(a + b) + 16 = -5 - 4(-1) + 16 = 15.

Mar 10, 2021