+0  
 
+1
38
3
avatar+476 

Three consecutive positive odd integers $a$, $b$ and $c$ satisfy $b^2 - a^2 = 344$ and $c^2 - b^2 > 0$. What is the value of $c^2 - b^2$?

gueesstt  Apr 12, 2018

Best Answer 

 #1
avatar+92217 
+4

Three consecutive positive odd integers $a$, $b$ and $c$ satisfy $b^2 - a^2 = 344$ and $c^2 - b^2 > 0$. What is the value of $c^2 - b^2$?

 

b-2, b,  b+2        where a is odd

 

\(b^2-(b-2)^2=344\\ b^2-b^2+4b-4=344\\ 4b-4=344\\ b-1=86\\ b=87 \)

 

a=85

b=87

c=89

 

89^2-87^2   = 352

Melody  Apr 13, 2018
Sort: 

3+0 Answers

 #1
avatar+92217 
+4
Best Answer

Three consecutive positive odd integers $a$, $b$ and $c$ satisfy $b^2 - a^2 = 344$ and $c^2 - b^2 > 0$. What is the value of $c^2 - b^2$?

 

b-2, b,  b+2        where a is odd

 

\(b^2-(b-2)^2=344\\ b^2-b^2+4b-4=344\\ 4b-4=344\\ b-1=86\\ b=87 \)

 

a=85

b=87

c=89

 

89^2-87^2   = 352

Melody  Apr 13, 2018
 #2
avatar+85757 
+2

Nice, Melody   !!!!

 

 

cool cool cool

CPhill  Apr 13, 2018
 #3
avatar+476 
+2

Thank you!

gueesstt  Apr 13, 2018

12 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details