+0  
 
+1
118
3
avatar+604 

Three consecutive positive odd integers $a$, $b$ and $c$ satisfy $b^2 - a^2 = 344$ and $c^2 - b^2 > 0$. What is the value of $c^2 - b^2$?

gueesstt  Apr 12, 2018

Best Answer 

 #1
avatar+92915 
+4

Three consecutive positive odd integers $a$, $b$ and $c$ satisfy $b^2 - a^2 = 344$ and $c^2 - b^2 > 0$. What is the value of $c^2 - b^2$?

 

b-2, b,  b+2        where a is odd

 

\(b^2-(b-2)^2=344\\ b^2-b^2+4b-4=344\\ 4b-4=344\\ b-1=86\\ b=87 \)

 

a=85

b=87

c=89

 

89^2-87^2   = 352

Melody  Apr 13, 2018
 #1
avatar+92915 
+4
Best Answer

Three consecutive positive odd integers $a$, $b$ and $c$ satisfy $b^2 - a^2 = 344$ and $c^2 - b^2 > 0$. What is the value of $c^2 - b^2$?

 

b-2, b,  b+2        where a is odd

 

\(b^2-(b-2)^2=344\\ b^2-b^2+4b-4=344\\ 4b-4=344\\ b-1=86\\ b=87 \)

 

a=85

b=87

c=89

 

89^2-87^2   = 352

Melody  Apr 13, 2018
 #2
avatar+87639 
+2

Nice, Melody   !!!!

 

 

cool cool cool

CPhill  Apr 13, 2018
 #3
avatar+604 
+2

Thank you!

gueesstt  Apr 13, 2018

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.