Three consecutive positive odd integers $a$, $b$ and $c$ satisfy $b^2 - a^2 = 344$ and $c^2 - b^2 > 0$. What is the value of $c^2 - b^2$?
b-2, b, b+2 where a is odd
\(b^2-(b-2)^2=344\\ b^2-b^2+4b-4=344\\ 4b-4=344\\ b-1=86\\ b=87 \)
a=85
b=87
c=89
89^2-87^2 = 352
Nice, Melody !!!!
Thank you!