We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
289
3
avatar+606 

Three consecutive positive odd integers $a$, $b$ and $c$ satisfy $b^2 - a^2 = 344$ and $c^2 - b^2 > 0$. What is the value of $c^2 - b^2$?

 Apr 12, 2018

Best Answer 

 #1
avatar+100025 
+4

Three consecutive positive odd integers $a$, $b$ and $c$ satisfy $b^2 - a^2 = 344$ and $c^2 - b^2 > 0$. What is the value of $c^2 - b^2$?

 

b-2, b,  b+2        where a is odd

 

\(b^2-(b-2)^2=344\\ b^2-b^2+4b-4=344\\ 4b-4=344\\ b-1=86\\ b=87 \)

 

a=85

b=87

c=89

 

89^2-87^2   = 352

 Apr 13, 2018
 #1
avatar+100025 
+4
Best Answer

Three consecutive positive odd integers $a$, $b$ and $c$ satisfy $b^2 - a^2 = 344$ and $c^2 - b^2 > 0$. What is the value of $c^2 - b^2$?

 

b-2, b,  b+2        where a is odd

 

\(b^2-(b-2)^2=344\\ b^2-b^2+4b-4=344\\ 4b-4=344\\ b-1=86\\ b=87 \)

 

a=85

b=87

c=89

 

89^2-87^2   = 352

Melody Apr 13, 2018
 #2
avatar+99397 
+2

Nice, Melody   !!!!

 

 

cool cool cool

CPhill  Apr 13, 2018
 #3
avatar+606 
+2

Thank you!

gueesstt  Apr 13, 2018

13 Online Users

avatar
avatar