+0  
 
+1
49
2
avatar+37 

Let \(\mathcal{R}\) denote the circular region bounded by \(x^2+y^2=36\)\(.\) The lines \(x=4\) and \(y=3\) partition \(\mathcal{R}\) into four regions \(\mathcal{R}_1\)\(,\)\(\mathcal{R}_2,\)\(\mathcal{R}_3,\) and \(\mathcal{R}_4.\) Let \([\mathcal{R}_i]\) denote the area of region \(\mathcal{R}_i.\) If \([\mathcal{R}_1] > [\mathcal{R}_2] > [\mathcal{R}_3] > [\mathcal{R}_4]\)\(,\) then compute \([\mathcal{R}_1] - [\mathcal{R}_2] - [\mathcal{R}_3] + [\mathcal{R}_4].\)

 Dec 19, 2019
 #1
avatar+106519 
+2

Heureka had an ingenious solution,  here  : 

 

https://web2.0calc.com/questions/let-denote-the-circular-region-bounded-by-x-2-y-2

 

 

cool cool cool 

 Dec 19, 2019
 #2
avatar+37 
+2

Thanks! I understand the solution, too, now! laugh

madyl  Dec 19, 2019

6 Online Users

avatar