We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
55
1
avatar

As shown in the diagram, \(\angle MOL=30 ^\circ\) and \(A\) is a point inside \(\angle MOL\) with \(OA=6\). Let \(B\) and \(C\) be points on rays \(\overrightarrow {OM}\) and \(\overrightarrow {OL}\) respectively. Find the smallest possible perimeter of \(\triangle ABC\).
 

https://latex.artofproblemsolving.com/7/d/9/7d957ed179a1092b65680707dd356a356d05a02e.png

 Apr 30, 2019
 #1
avatar+44 
-2

If this is an AOPS problem, try referring to the textbook first before coming here for help :)

 

If you aleady did that, ask on message boards

 Apr 30, 2019

17 Online Users

avatar