+0  
 
0
357
1
avatar+128 

The equation of a parabola is given.

 

y=−1/6x^2+7x−80

 

What is the equation of the directrix of the parabola?

Acceptfully  May 29, 2017
 #1
avatar+87323 
+2

y= (−1/6)x^2+7x−80      multiply both sides by -6

 

-6y  =    x^2   - 42x  +  480       subtract 480 from both sides

 

-6y  - 480   =  x^2  -  42x    take (1/2)  of 42  = 21.....square this  = 441  and add to both sides

 

-6y - 480 + 441  =   x^2  - 42x  +  441       simplify the left, factor the right

 

-6y - 39   =  (x  - 21)^2      factor the left side as

 

-6 (y  +  39/6)   =  ( x - 21)^2       (1)

 

Usiing the form

 

4p (y - k)  =  ( x  - h)      we  can   write (1)  as

 

4 (-3/2)(y - (-39/6) )   =  ( x  - 21)^2

 

 

The vertex  = ( x, k)  =  ( 21, -39/6)   and    p  = -3/2

 

And the directrix   is given by    y  = k - p  →   y  = -39/6 - (-3/2)  =  -39/6 + 3/2  = -39/6 + 9/6  =

-30/6  = - 5

 

See the graph, here :  https://www.desmos.com/calculator/hqmz4lhcvk

 

 

 

cool cool cool

CPhill  May 29, 2017
edited by CPhill  May 29, 2017

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.