+0

# Help please quick! :(

-1
70
2
+46

Simplify the expression
$\frac{1}{\sqrt{36} + \sqrt{27}} + \frac{1}{\sqrt{27} + \sqrt{18}} + \frac{1}{\sqrt{18} + \sqrt{9}}.$

Apr 12, 2020

### 2+0 Answers

#1
0

please I really need help!

Apr 12, 2020
#2
+21004
+1

1 / [ sqrt(36) + sqrt(27) ]  =  1 / [ 6 + 3sqrt(3) ]            =  1 / [ 3·( 2 + sqrt(3) ) ]

1 / [ sqrt(27) + sqrt(18) ]  =  1 / [ 3sqrt(3) + 3sqrt(2) ]  =  1 / [ 3·( sqrt(3) + sqrt(2) ) ]

1 / [ sqrt(18) + sqrt(9) ]    =  1 / [ 3sqrt(2) + 3 ]            =  1 / [ 3·( sqrt(2) + 1 ) ]

So, the common denominator is:  3 · ( 2 + sqrt(3) ) · ( sqrt(3) + sqrt(2) ) ·( sqrt(2) + 1 ) ]

Multiply the numerator and denominator of the first term by:       ( sqrt(3) + sqrt(2) ) ·( sqrt(2) + 1 )

Multiply the numerator and denominator of the second term by:  ( 2 + sqrt(3) ) · ( sqrt(2) + 1 )

Multiply the numerator and denominator of the third term by:       ( 2 + sqrt(3) ) · ( sqrt(3) + sqrt(2) )

This will be messy; if you need further help -- ask ...

Apr 12, 2020