We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
138
2
avatar+507 

ABC is an equilateral triangle with side length 4. M is the midpoint of BC, and AM is a diagonal of square ALMN. Find the area of the region common to both ABC and ALMN.

 Jul 27, 2019
 #1
avatar+104937 
+3

See the following image: 

We are looking for the area [ AEMF]

Let B  = (0, 0)   C  = (4, 0)   A  =  (2, 2√3)

 

Angle EMC  = 45° 

 

The segment MN  lies  on a line with a slope  = tan45°  = 1

So....the equation of this iine is   y = ( 1) (x - 2)  =  x - 2    (1) 

 

And the segment  AC   lies on a line with a slope  of tan (120°)  =  -√3 ( x - 4) = -√3 x + 4√3   (2)

 

So......the x value of the intersection of (1) and (2)     can be found as

 

x - 2  =  -√3 x + 4√3

x ( 1 + √3) = 4√3 + 2

x  = [ 4√3 + 2 ] / [ 1 + √3]

 

So   the y value  of  this intersection is

 

y =    [ 4√3 + 2 ] / [ 1 + √3]  - 2   =   [ 2√3 ] / [ 1 + √3]

 

So  E  =   ( [ 4√3 + 2 ] / [ 1 + √3] ,  [ 2√3 ] / [ 1 + √3] )

 

So...the area of triangle EMC  = (1/2) ( MC) ([ 2√3 ] / [ 1 + √3]) =  (1/2)(2)[ 2√3 ] / [ 1 + √3] =

[ 2√3 ] / [ 1 + √3] units^2     (3)     

 

And the area of  AMC  =  (1/2)(2√3)(2)  = 2√3  units^2   (4)

 

So   area  [ AEMF]  =   2 ( (4) - (3)  )   =    2  ( 2√3  -  [ 2√3 ] / [ 1 + √3]  )  =  2 (3√3 - 3)  units^2  ≈ 4.39 units^2

 

 

cool cool cool

 Jul 27, 2019
 #2
avatar+104937 
+2

Here's one more way to solve this

 

Since AM    =  2√3   and is the diagonal of the square....then AN  must be  2√3 / √2  = √2 * √3  =  √6

 

And angle ANE  is right    and angle NAE = 15°

So angle AEN  =  75°

So....using the Law of Sines

EN / sin NAE  =  AN / sin AEN

EN / sin 15  =  √6 / sin 75

EN  =  √6 sin15 / sin 75  = √6 sin15/cos15  = √6 tan 15   = √6 [ 1 - cos 30] / sin (30)  =

√6 [ 1 - √3/2] / (1/2)  =  √6 [ 2 - √3]

 

So  the area of triangles AEN and ALF    = AN * EN  =  √6 * √6 [ 2 - √3]  =  6 [2 - √3]    (1)

 

So the area  common to the square and triangle =   [ AEMF]  =  area of square - (1)  =    6 - 6[2 -√3]  = [ 6√3 - 6]  units^2  ≈ 4.39 units^2

 

 

cool cool cool  

 Jul 28, 2019

4 Online Users

avatar
avatar