+0  
 
0
843
1
avatar

 Let $f(x) = 2x + 7$ and $g(x) = 3x + c$. Find $c$ if $(f \circ g)(x) = (g \circ f)(x)$ for all $x$.

Guest Jul 24, 2017
 #1
avatar+7339 
+1

Find  c  if  f( g(x) )  =  g( f(x) )  for all  x  .

 

f(x)  =  2x + 7                          To find  f( g(x)  ) , replace every instance of  x  with  g(x)  .

f( g(x) )  =  2( g(x) ) + 7             Since  g(x)  =  3x + c  , we can write...

f( g(x) )  =  2( 3x + c ) + 7

 

g(x)  =  3x + c                         To find  g( f(x) ) , replace every instance of  x  with  f(x)  .

g( f(x) )  =  3( f(x) ) + c              Since  f(x)  =  2x + 7  , we can write...

g( f(x) )  =  3( 2x + 7 ) + c

 

We want to know what  c  is when

f( g(x) )  =  g( f(x) )                                   Substitute the functions in.

2( 3x + c ) + 7  =  3( 2x + 7 ) + c

6x + 2c + 7  =  6x + 21 + c                    Subtract  6x  from both sides.

2c + 7  =  21 + c                                    Subtract  c  from both sides, and subtract  7  from both sides.

c  =  14

hectictar  Jul 24, 2017

27 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.