+0  
 
0
49
2
avatar+58 

Points D, E, and  are the midpoints of sides BC, CA, and AB, respectively, of triangle ABC. Points X, Y, and Z are the midpoints of EF, FD, and DE, respectively. If the area of triangle XYZ is 21, then what is the area of triangle CXY?

bbelt711  Aug 3, 2017
Sort: 

2+0 Answers

 #1
avatar+75362 
+1

 

 

I have down-scaled the problem a little, but the same logic would apply

 

The image below lays out the particulars :

 

The base of triangle XYZ  = XY  = 6  and the height  = 6...so...the area =

6^2 / 2 = 18 sq units

 

Now...X  = (12, 12)  and Y  = (15,6)

 

And  we can call segment XY the base of triangle CXY...and this is

 

sqrt [ (15 -12)^2 + ( 12 - 6)^2 ] = sqrt [ 3^2 + 6^2] = sqrt (45) =  3sqrt (5) units in length = (1)

 

And the equation of the line passing through these two points  is given by

 

y = -2(x -12) + 12 ...  y  = -2x + 36  or      2x + y - 36  = 0   = AX + By + C  = 0

 

Now ....the distance from C to this line is the altitude of CXY and it is given by

 

altitude =  abs (Ax + By + C) / sqrt (A^2 + B^2)   where   (x,y)  are the coordinates of C  = (0,0)

 

So we have that 

 

altitude  = abs ( 2(0) + 1(0)  - 36 ) / sqrt ( 2^2 + 1^2)  =  36 / sqrt (5)  = (2)

 

So.....the area of  triangle CXY  =  base * altitude / 2 =   (1) * (2) / 2 =

[  3 sqrt(5) * 36 ] / [ 2 * sqrt (5) ] =  3 * 36 / 2  =  108 / 2 = 54 sq  units

 

Now.....since in the original problem the area of XYZ is specified as 21 sq units....and the area of XYZ triangle in the diagram = 18 sq units...we can use a proportion to find the true area of CXY....so we have....

 

21 / 18   =  true area of CXY /  54

 

7 / 6  =  true area of CXY / 54

 

true area of CXY = 7 * 54 / 6  =   7 * 9  = 63 sq units

 

 

cool cool cool

CPhill  Aug 3, 2017
edited by CPhill  Aug 3, 2017
 #2
avatar+18394 
+1

Points D, E, and F are the midpoints of sides BC, CA, and AB, respectively, of triangle ABC.
Points X, Y, and Z are the midpoints of EF, FD, and DE, respectively.
If the area of triangle XYZ is 21, then what is the area of triangle CXY?

 

Areas = ?

 

\(\begin{array}{|rclcrcl|} \hline \triangle ABC &=& A \\ \triangle DEF &=& \frac14 A \\ \triangle XYZ &=& \frac14 \triangle DEF \\ &=& \frac14 \cdot \frac14 A \\ &=& \frac{1}{16} A = 21 \\ \frac{1}{16} A &=& 21 \\ A &=& 16\cdot 21 \\\\ \triangle CXY &=& \frac{AB}{4} \cdot \frac{h}{2} \quad & | & \sin(A) &=& \frac{h}{ \frac{AC}{2} +\frac{AC}{4} } \\ & & & | & \sin(A) &=& \frac{h}{ \frac34 AC } \\ & & & | & h &=& \frac34 AC \sin(A) \\ \triangle CXY &=& \frac{AB}{4} \cdot \frac{ \frac34 AC \sin(A) }{2} \\ &=& \frac{3}{32} \cdot AB\cdot AC\cdot \sin(A) \quad & | & AB\cdot AC\cdot \sin(A) &=& 2A \\ &=& \frac{3}{32} \cdot 2A \\ &=& \frac{6}{32} A \quad & | & A &=& 16\cdot 21 \\ &=& \frac{6}{32} \cdot 16\cdot 21 \\ &=& \frac{6}{2} \cdot 21 \\ &=& 3 \cdot 21 \\ \triangle CXY &=& 63 \\ \hline \end{array}\)

 

laugh

heureka  Aug 4, 2017

16 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details