We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
179
2
avatar+30 

If $a\equiv 18\pmod{42}$ and $b\equiv 73\pmod{42}$, then for what integer $n$ in the set $\{100,101,102,\ldots,140,141\}$ is it true that $$a-b\equiv n\pmod{42}~?$$

 Apr 24, 2019
 #1
avatar
+1

Sorry, cannot read your "LaTex".

 Apr 25, 2019
 #2
avatar+23318 
+2

Help please!

 

\(\begin{array}{|rcll|} \hline a &\equiv& 18\pmod{42} \\ b &\equiv& 73\pmod{42} \\ \hline a-b &\equiv& 18- 73 \pmod{42} \\ a-b &\equiv& -55 \pmod{42} \\ a-b &\equiv& -55+42+42 \pmod{42} \\ a-b &\equiv& 29 \pmod{42} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline a-b &\equiv& 29 \pmod{42} \\ a-b &=& 29 + z\cdot 42,\ z \in \mathbb{Z} \\ && \begin{array}{|r|c|c|} \hline & \mathbf{n} = (a-b)\pmod{42} & \\ z & =29 + z\cdot 42 & n \text{ in set} \\ \hline 0 & n=29 & \\ \hline 1 & n=71 & \\ \hline 2 & n=113 & \checkmark \\ \hline 3 & n=155 & \\ \hline \ldots \\ \hline \end{array} \\ \hline \end{array}\)

 

It is true for \(n = 113 \)

 

laugh

 Apr 25, 2019

8 Online Users