+0  
 
0
103
5
avatar+21 

I'm behind on a few assignments and I don't know how to do these

 

1.(Didn't mean to click on 9)

2.

3.

4.

5.

Vegito  Mar 5, 2018
Sort: 

5+0 Answers

 #1
avatar+7048 
+3

1.

 

When  x = 3 ,  f(x)  =  -9   and   g(x)  =  -9 ..so

When  x = 3 ,  f(x)  =  g(x)

so  x = 3  is a solution to  f(x) = g(x)

 

When  x = 7 ,  f(x)  =  2   and   g(x)  =  2 ..so

When  x = 7 ,  f(x)  =  g(x)

so  x = 7  is a solution to  f(x) = g(x)

 

Those are the only two known solutions.

hectictar  Mar 5, 2018
 #2
avatar+7048 
+3

2.

 

When  x = -1 ,  f(x)  =  -3   and   g(x)  =  -3     so

When  x = -1 ,  f(x)  =  g(x)

so  x = -1  is a solution to  f(x) = g(x)

 

When  x = 1 ,  f(x)  =  -1   and   g(x)  =  -1     so

When  x = 1 ,  f(x)  =  g(x)

so  x = 1  is a solution to  f(x) = g(x)

 

Those are the only two solutions.

hectictar  Mar 5, 2018
 #3
avatar+7048 
+3

3.

When  x = 4 ,  f(x)  =  1   and   g(x)  =  1 ..so

When  x = 4 ,  f(x)  =  g(x)

so  x = 4  is the solution to  f(x) = g(x)

hectictar  Mar 5, 2018
 #4
avatar+7048 
+3

4.

When  x = 0 ,  f(x)  =  -4   and   g(x)  =  -4    so

When  x = 0 ,  f(x)  =  g(x)

so  x = 0  is a solution to  f(x) = g(x)

 

There is one more solution to  f(x) = g(x)  .  Can you find it?

hectictar  Mar 5, 2018
 #5
avatar+7048 
+3

5.

 

First let's find what time the rockets are at the same height.

 

height of Brynn's rocket  =  f(x)

height of Denise's rocket  =  g(x)

 

height of Brynn's rocket  =  height of Denise's rocket

f(x)  =  g(x)

-4.9x2 + 75x   =   -4.9x2 + 50x + 38     Solve this equation for  x . Add  4.9x2  to both sides.

75x  =  50x + 38                                   Subtract  50x  from both sides.

25x  =  38                                             Divide both sides by  25.

x   =   1.52

 

Now we know that after 1.52 seconds, the rockets are at the same height.

To find what this height is, plug in  1.52  for  x  into either function.

 

f(1.52)  =  -4.9(1.52)2 + 75(1.52)   ≈   102.7     meters

hectictar  Mar 5, 2018

34 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy