+0  
 
0
256
5
avatar+21 

I'm behind on a few assignments and I don't know how to do these

 

1.(Didn't mean to click on 9)

2.

3.

4.

5.

 Mar 5, 2018
 #1
avatar+7347 
+3

1.

 

When  x = 3 ,  f(x)  =  -9   and   g(x)  =  -9 ..so

When  x = 3 ,  f(x)  =  g(x)

so  x = 3  is a solution to  f(x) = g(x)

 

When  x = 7 ,  f(x)  =  2   and   g(x)  =  2 ..so

When  x = 7 ,  f(x)  =  g(x)

so  x = 7  is a solution to  f(x) = g(x)

 

Those are the only two known solutions.

 Mar 5, 2018
 #2
avatar+7347 
+3

2.

 

When  x = -1 ,  f(x)  =  -3   and   g(x)  =  -3     so

When  x = -1 ,  f(x)  =  g(x)

so  x = -1  is a solution to  f(x) = g(x)

 

When  x = 1 ,  f(x)  =  -1   and   g(x)  =  -1     so

When  x = 1 ,  f(x)  =  g(x)

so  x = 1  is a solution to  f(x) = g(x)

 

Those are the only two solutions.

 Mar 5, 2018
 #3
avatar+7347 
+3

3.

When  x = 4 ,  f(x)  =  1   and   g(x)  =  1 ..so

When  x = 4 ,  f(x)  =  g(x)

so  x = 4  is the solution to  f(x) = g(x)

 Mar 5, 2018
 #4
avatar+7347 
+3

4.

When  x = 0 ,  f(x)  =  -4   and   g(x)  =  -4    so

When  x = 0 ,  f(x)  =  g(x)

so  x = 0  is a solution to  f(x) = g(x)

 

There is one more solution to  f(x) = g(x)  .  Can you find it?

 Mar 5, 2018
 #5
avatar+7347 
+3

5.

 

First let's find what time the rockets are at the same height.

 

height of Brynn's rocket  =  f(x)

height of Denise's rocket  =  g(x)

 

height of Brynn's rocket  =  height of Denise's rocket

f(x)  =  g(x)

-4.9x2 + 75x   =   -4.9x2 + 50x + 38     Solve this equation for  x . Add  4.9x2  to both sides.

75x  =  50x + 38                                   Subtract  50x  from both sides.

25x  =  38                                             Divide both sides by  25.

x   =   1.52

 

Now we know that after 1.52 seconds, the rockets are at the same height.

To find what this height is, plug in  1.52  for  x  into either function.

 

f(1.52)  =  -4.9(1.52)2 + 75(1.52)   ≈   102.7     meters

 Mar 5, 2018

15 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.