Processing math: 100%
 
+0  
 
0
871
1
avatar+288 

(a) Prove that if the roots of x3+ax2+bx+c=0 form an arithmetic sequence, then 2a3+27c=9ab.

 

(b)  Prove that if 2a3+27c=9ab, then the roots of x3+ax2+bx+c=0 form an arithmetic squence. 

 

-------Thanks! coollaugh

 Apr 22, 2020
 #1
avatar+23254 
+3

a)  Let the first root be "r", then since the roots form an arithmetic sequence, the other two roots are "r + d" and "r + 2d".

     The factors will be:  (x - r)(x - (r + d))(x - (r + 2d))  or  (x - r)(x - r - d)(x - r - 2d)

 

     Expanding  (x - r)(x - r - d)(x - r - 2d)  =  x3 -3rx2 - 3dx2 + 3r2x + 6drx + 2d2x - r3 - 3dr2 - 2d2r

 

     which means that      a  =  -3r - 3d          b  =  3r2 + 6dr + 2d2          c  =  -r3 - 3dr2 - 2d2r

 

    2a3  =  -54r3 - 162r2d - 162rd2 - 54d3

    27c  =  -27r3 - 81dr2 - 54d2r

    9ab  =  -81r3 - 162r2d - 54d2r - 81r2d - 162d2r - 54d3

 

So, 2a3 + 27c  =  9ab

 

[It wasn't easy ...]

 Apr 22, 2020

1 Online Users