+0  
 
+1
38
1
avatar+327 

The surface area S (in square meters) of a hot-air balloon is given by S(r)=4(pi)r2, where r is the radius of the balloon (in meters). If the radius is increasing with time t (in seconds) according to the formula r(t)=2/3t3, t≥0, find the surface area of the balloon as a function of the time t.

 
AdamTaurus  Oct 9, 2017
social bar

Best Answer 

 #1
avatar+4697 
+2

surface area  =  4 * π * (radius)2

 

And they tell us that the

 

radius  =  2/3 t3

 

And we want an equation that gives the surface area for any value of  t  ( that is ≥ 0 ) .

 

So....instead of calling the radius "radius", we want to say the radius is  2/3 t3  .

 

surface area  =  4 * π * (2/3 t3)2          Then simplify this equation.

 

surface area  =  4 * π * 4/9 * t6

 

surface area  =  16 π t6 / 9             So we can say...

 

s(t)  =  16 π t6 / 9

 
hectictar  Oct 10, 2017
Sort: 

1+0 Answers

 #1
avatar+4697 
+2
Best Answer

surface area  =  4 * π * (radius)2

 

And they tell us that the

 

radius  =  2/3 t3

 

And we want an equation that gives the surface area for any value of  t  ( that is ≥ 0 ) .

 

So....instead of calling the radius "radius", we want to say the radius is  2/3 t3  .

 

surface area  =  4 * π * (2/3 t3)2          Then simplify this equation.

 

surface area  =  4 * π * 4/9 * t6

 

surface area  =  16 π t6 / 9             So we can say...

 

s(t)  =  16 π t6 / 9

 
hectictar  Oct 10, 2017

22 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details