+0

0
40
1
+139

a. Solve the equatation x^2 - 2x = 24

b. What does this solution mean?

c. The surface of the triangle is 120 square cm. What is the length of AB?

HeyxJacq  Feb 14, 2018
Sort:

#1
+82916
+3

a.  x^2  -  2x  = 24      subtract 24 from both sides

x^2  - 2x  -  24   =  0       factor

(x - 6) (x + 4)  = 0

Setting each factor  to 0  and solving for x  we get that   x  = 6   or x  =  -4

b.  Note that the area of the triangle on the right  =  (1/2)x ( x - 2)

And this is the same area as the one on the left   = (1/2)x (x -2)

(x - 2)  [  (1/2)x  + (1/2)x]   =  (x - 2) [ x  ] =  x^2  - 2x

So......this means that  (a)   is representing the area of the triangle as 24 units^2

Proof..... using the positive solution  found in "a" we have that

(6)^2 -2(6)   =   36  -  12   =   24 units^2

c.   If the surface area  is 120 cm^2

We can  solve this

x^2  - 2x  =  120       subtract 120 from both sides

x^2  - 2x  - 120   = 0      factor

(x - 12) ( x + 10)  =  0

Setting each factor to 0 and solving for x  we get that  x  =  12  or x  = -10

Taking  the positive solution   AB  =  2x  =  2(12)   =  24 cm

CPhill  Feb 14, 2018

### 10 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details