We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
50
3
avatar

1) Find a/b when \(2\log{(a -2b)} = \log{a} + \log{b}.\)

2) For each positive integer p, let b(p) denote the unique positive integer k such that \(|k-\sqrt{p}|<\frac{1}{2}\). For example, b(6)=2 and b(23)=5. Find \(S=\sum_{p=1}^{2007} b(p)\)

3) William Sydney Porter tried to perform the calculation \(\frac{-3+4i}{1+2i}\). However, he accidentally missed the minus sign, finding \(\frac{3+4i}{1+2i}=\frac{11}{5}-\frac{2}{5}i\). What answer should he have obtained?

 Jul 14, 2019
 #1
avatar+102386 
+1

1.

 

2log ( a - 2b)  = log a + log  b

 

log(a - 2b)^2  = ;og (ab)      which implies that

 

(a - 2b)^2  = ab

 

a^2 - 4ab  + 4b^2  =  ab

 

a^2 - 5ab + 4b^2  =  0    factor

 

(a - 4b)  ( a - b)  = 0

 

So...either   a - 4b  = 0  ⇒   a = 4b   ⇒  a / b   = 4    (1)

 

or

 

a - b  =  0   ⇒  a  = b

If a is positive.....the original log on the left hand side is undefined

If a is negative......log a is undefined..so...

 

a / b   = 4

 

 

 

cool cool cool

 Jul 14, 2019
 #2
avatar
+1

2)    sumfor(n, 1, 44, 2*n^2) + 27*45 = 59,955

 Jul 14, 2019
 #3
avatar+102386 
+1

3)

 

-3 + 4i           [ 1 - 2i ]          -3 + 4i +6i - 8i^2          -3 + 10i - 8(-1)          5 + 10i

_______                       =   ______________  =   _____________  =    ______  =

1  + 2i           [ 1 -2i ]           1 -  4i^2                        1 - 4(-1)                        5

 

 

1 + 2i

 

BTW ....William Sydney Porter  ....better known as  .....  "O Henry "

 

 

 

cool cool cool

 Jul 14, 2019

16 Online Users

avatar