+0  
 
0
181
1
avatar

\(\text{If $f(x)=\dfrac{x-3}{x-4}$, then for what value of $x$ is $f^{-1}(x)$ undefined? }\)

 Jul 19, 2019
 #1
avatar+19675 
0

For the ORIGINAL function x = 4 is undefined...

Let's find the inverse funtion  f^-1     solve the original for x

 

y = (x-3)/(x-4)

yx -4y = x-3

-4y+3 = x - yx

(-4y+3) = x (1-y)

 

(-4y+3)/(1-y) = x       Now 'switch' the x's and y's

 

(-4x+3)/(1-x) =y       this is f^-1  and we can see that x cannot = 1    undefined at this value of  x

 Jul 19, 2019

36 Online Users

avatar
avatar
avatar