We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
106
1
avatar

if x=sin(x+y), find dy/dx

 Nov 20, 2018

Best Answer 

 #1
avatar+21978 
+12

if x=sin(x+y), find dy/dx

 

\(\begin{array}{|rcl|} \hline &&\text{Differentiate both sides of the equation, getting: } \\ D(x) &=& D(\sin(x+y)) \\ &&\text{Use the chain rule}: \\ D(x) &=& \cos(x+y)\cdot D(x+y) \quad | \quad D(x) = 1 \\ 1 &=& \cos(x+y)\cdot D(x+y) \\ 1 &=& \cos(x+y)\cdot(1+y') \\ \dfrac{1}{\cos(x+y)} &=& 1+y' \\ \mathbf{ y' } & \mathbf{=} & \mathbf{ \dfrac{1}{\cos(x+y) }-1 } \\\\ \mathbf{ y' } & \mathbf{=} & \mathbf{ \sec(x+y)-1 } \\ \hline \end{array} \)

 

laugh

 Nov 20, 2018
edited by heureka  Nov 20, 2018
 #1
avatar+21978 
+12
Best Answer

if x=sin(x+y), find dy/dx

 

\(\begin{array}{|rcl|} \hline &&\text{Differentiate both sides of the equation, getting: } \\ D(x) &=& D(\sin(x+y)) \\ &&\text{Use the chain rule}: \\ D(x) &=& \cos(x+y)\cdot D(x+y) \quad | \quad D(x) = 1 \\ 1 &=& \cos(x+y)\cdot D(x+y) \\ 1 &=& \cos(x+y)\cdot(1+y') \\ \dfrac{1}{\cos(x+y)} &=& 1+y' \\ \mathbf{ y' } & \mathbf{=} & \mathbf{ \dfrac{1}{\cos(x+y) }-1 } \\\\ \mathbf{ y' } & \mathbf{=} & \mathbf{ \sec(x+y)-1 } \\ \hline \end{array} \)

 

laugh

heureka Nov 20, 2018
edited by heureka  Nov 20, 2018

27 Online Users

avatar