+0  
 
0
50
1
avatar

if x=sin(x+y), find dy/dx

Guest Nov 20, 2018

Best Answer 

 #1
avatar+20680 
+10

if x=sin(x+y), find dy/dx

 

\(\begin{array}{|rcl|} \hline &&\text{Differentiate both sides of the equation, getting: } \\ D(x) &=& D(\sin(x+y)) \\ &&\text{Use the chain rule}: \\ D(x) &=& \cos(x+y)\cdot D(x+y) \quad | \quad D(x) = 1 \\ 1 &=& \cos(x+y)\cdot D(x+y) \\ 1 &=& \cos(x+y)\cdot(1+y') \\ \dfrac{1}{\cos(x+y)} &=& 1+y' \\ \mathbf{ y' } & \mathbf{=} & \mathbf{ \dfrac{1}{\cos(x+y) }-1 } \\\\ \mathbf{ y' } & \mathbf{=} & \mathbf{ \sec(x+y)-1 } \\ \hline \end{array} \)

 

laugh

heureka  Nov 20, 2018
edited by heureka  Nov 20, 2018
 #1
avatar+20680 
+10
Best Answer

if x=sin(x+y), find dy/dx

 

\(\begin{array}{|rcl|} \hline &&\text{Differentiate both sides of the equation, getting: } \\ D(x) &=& D(\sin(x+y)) \\ &&\text{Use the chain rule}: \\ D(x) &=& \cos(x+y)\cdot D(x+y) \quad | \quad D(x) = 1 \\ 1 &=& \cos(x+y)\cdot D(x+y) \\ 1 &=& \cos(x+y)\cdot(1+y') \\ \dfrac{1}{\cos(x+y)} &=& 1+y' \\ \mathbf{ y' } & \mathbf{=} & \mathbf{ \dfrac{1}{\cos(x+y) }-1 } \\\\ \mathbf{ y' } & \mathbf{=} & \mathbf{ \sec(x+y)-1 } \\ \hline \end{array} \)

 

laugh

heureka  Nov 20, 2018
edited by heureka  Nov 20, 2018

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.