We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
796
1
avatar

An art student uses dilations in all her art. She first plans the art piece on a coordinate grid. Determine the vertices of the image of the triangle with vertices A(1,1) B(2,4) and C(3,9) after a dilation with scale factor 1.5.

 

I'm very confused with this problem, so I need all the help I can get. Thanks to anybody that has helped me solve this problem! I really appreciate it :)

 Feb 16, 2016
 #1
avatar+23278 
+5

An art student uses dilations in all her art. She first plans the art piece on a coordinate grid. Determine the vertices of the image of the triangle with vertices A(1,1) B(2,4) and C(3,9) after a dilation with scale factor 1.5.

 

I asume the center of enlargement is the centroid.

 

We have: \(\begin{array}{rcll} \vec{A}=\binom{1}{1} \qquad \vec{B} = \binom{2}{4} \qquad \vec{C} = \binom{3}{9} \\ \end{array}\)

The centroid of the triangle is: \(\vec{c} = \frac13\cdot ( \vec{A}+\vec{B}+\vec{C} ) =\dbinom{\frac{x_a+x_b+x_c}{3}}{ \frac{y_a+y_b+y_c}{3}}= \dbinom{\frac{1+2+3}{3}}{ \frac{1+4+9}{3}} = \dbinom{2}{\frac{14}{3}}\)

1. Barycentric coordinates:

\(\begin{array}{rcll} \vec{A}-\vec{c} &=& \dbinom{1-2}{1-\frac{14}{3}} = \dbinom{-1}{-\frac{11}{3}}\\\\ \vec{B}-\vec{c} &=& \dbinom{2-2}{4-\frac{14}{3}} = \dbinom{0}{-\frac23}\\\\ \vec{C}-\vec{c} &=& \dbinom{3-2}{9-\frac{14}{3}} = \dbinom{1}{\frac{13}{3}} \end{array}\)

 

2. Scale factor 1.5

\(\begin{array}{rcll} \dbinom{-1}{-\frac{11}{3}} \cdot 1.5 &=& \dbinom{-1.5}{-\frac{11}{2}}\\\\ \dbinom{0}{-\frac23}\cdot 1.5 &=& \dbinom{0}{-1}\\\\ \dbinom{1}{\frac{13}{3}}\cdot 1.5 &=& \dbinom{1.5}{\frac{13}{2}} \end{array}\)

 

3. The vertices of the image \(+\vec{c}\)

\(\begin{array}{rcll} \dbinom{-1.5}{-\frac{11}{2}} + \dbinom{2}{\frac{14}{3}} &=& \dbinom{0.5}{-\frac{5}{6}}\\\\ \dbinom{0}{-1} + \dbinom{2}{\frac{14}{3}} &=& \dbinom{2}{\frac{11}{3}}\\\\ \dbinom{1.5}{\frac{13}{2}} + \dbinom{2}{\frac{14}{3}} &=& \dbinom{3.5}{\frac{67}{6}} \end{array}\)

 

The vertices of the image are \(\begin{array}{rcll} A' (0.5,-\frac{5}{6} ) \qquad B' ( 2, \frac{11}{3}) \qquad C' ( 3.5, \frac{67}{6} ) \end{array}\)

laugh

.
 Feb 16, 2016

21 Online Users

avatar