+0  
 
0
5097
8
avatar

The interior angle measures of a pentagon form an arithmetic progression. The difference between the largest and smallest angle measures is 44 degrees . Find the measure of the smallest angle, in degrees.

 

 

In hexagon ABCDEF, AB = DE = 2, BC = EF = 4, CD = FA = 6, and all the interior angles are equal. Find the area of hexagon ABCDEF.

 Feb 11, 2017
 #1
avatar
+6

1) - The common difference between the angles =44/(5-1) =11 degrees.
Sum =N/2[2F + (N - 1)*D]
540 =5/2[2F + (5 -1)*11], solve for F
F =86 degrees - the smallest angle.
86+44 =130 degrees - the largest angle.

 Feb 11, 2017
 #2
avatar+129849 
0

There are probably easier ways to do this...... but

 

We have three "outside" triangles and one inner one

 

Area  of the the three "outside" triangles  =

 

(1/2)(√3/2)  [ 6*4 + 2 * 4  + 6 * 2)  ]  =  11√3   units^2

 

And we an construct an inner triangle with sides BF, BD and FD

 

Length of BF  =  √[ 6^2 + 2^2 – 2(6)(2)(1/2)]  = √28  

Length of BD  =  √[ 6^2 + 4^2 – 2(6)(4)(1/2)]  = √28

Length of FD  =  √[ 2^2 + 4^2 – 2(2)(4)(1/2)]  = √12

 

Deriving the semi-perimeter of this triangle →     s  =  [2√28 + √12] /  2  =

 

√3 + 2√7  = √3 + √28     →  s^2  =  31 + 2√84  = 31 + √336

 

And using Heron's formula  ...

 

Area of inner triangle = √ [ (√3 + √28)(√3 + √28 – √28)^2 (√3 + √28 – √12)  ]    =

 

√ [ (√3 + √28)(√3 )^2 (√3 + √28 – √12)  ]  =

 

√3   *  √ [ (√3 + √28) ((√3 + √28  – √12)  ]  =

 

√3   *  √ [ (s) ((s  – √12)  ]  =

 

√3   *  √ [ s^2  – √12 s)  ]  =

 

√3   *  √ [ 31 + √336 – √12 [ √3 + √28)  ]  =

 

√3   *  √ [ 31 + √336 – √36 - √336)  ]  =

 

√3   *  √ [ 31  – 6   ]  =

 

√3   *  √ [ 25   ]  =

 

√3   *  5   =

 

5√3  units^2

 

So....the total  area  = [11√3  + 5√3]   units^2   = 16√3   units^2

 

 

 

 

 

 

cool cool cool

 Feb 11, 2017
 #3
avatar+118667 
0

Opened by request.    laugh

 Aug 2, 2019
 #4
avatar+118667 
0

In hexagon ABCDEF, AB = DE = 2, BC = EF = 4, CD = FA = 6, and all the interior angles are equal. Find the area of hexagon ABCDEF.

 

This question makes absolutely no sense to me.

If all the interior angles are equal then it is a regular hexagon and all the sides must be equal too.

 

Edited:

Oh now I see, the question has just be worded badly. 

The writer did not want to waste written characters, they must have been in short supply. 

Like the trees in a rainforest perhaps!

 Aug 2, 2019
edited by Melody  Aug 2, 2019
 #6
avatar
0

What's wrong with the way guest worded it?

Guest Aug 2, 2019
 #7
avatar+1713 
0

The question itself is confusing.

I am talking about the hexagon problem.

tommarvoloriddle  Aug 2, 2019
 #5
avatar+118667 
0

Tom...riddle    asked me to open this questiuon. 

 

She thinks this is the answer

https://www.algebra.com/algebra/homework/Surface-area/Surface-area.faq.question.1068016.html

 Aug 2, 2019
 #8
avatar+1713 
0

I dont THINK it's the answer, I am POSITIVE that it is.

tommarvoloriddle  Aug 4, 2019

2 Online Users

avatar