+0  
 
0
40
2
avatar+6 

Let P(x) be a nonconstant polynomial, where all the coefficients are nonnegative integers. Prove that there exist infinitely many positive integers n such that P(n) is composite.

Hint(s):

Remember that if a and b are distinct integers, then P(a) - P(b) is divisible by a - b.

 Jun 27, 2021

5 Online Users

avatar