Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
-2
976
6
avatar+379 

deleted.

 Oct 29, 2019
edited by sinclairdragon428  Nov 20, 2019
 #1
avatar
+1

There are: 5^4 = 625 odd integers

There are 9000 / 5 =1,800 multiple of 5 integers

900 + 625 =1525 Total integers

 Oct 29, 2019
 #2
avatar+26397 
+3

let a equal the number of four digit odd numbers. let b equal the number of four digit multiples of 5. find a+b.

 

I assume:

These are two arithmetic series.

1001+(a1)2=9999|first odd four digit number =1001, last odd four digit number =9999(a1)2=99991001(a1)2=8998a1=4499a=4499+1a=45001000+(b1)5=9995|first four digit number multiples of 5=1000, last four digit number =9995(b1)5=99951000(b1)5=8995b1=1799b=1799+1b=1800

 

a+b=4500+1800=6300

 

laugh

 Oct 29, 2019
 #3
avatar
0

heureka: Isn't the number of odd integers from the left: 5(1,3,5,7,9) x 5 x 5 x 5 =5^4 =625 such numbers.

 Oct 29, 2019
 #4
avatar
0

heureka: You counted 4,500 ODD digits. He/she wants "four-digit odd numbers", which is 5^4 =625 odd numbers.

Guest Oct 29, 2019
 #5
avatar+379 
+1

Thank you to everyone! 6300 is the answer, so special thanks to heureka

 Oct 29, 2019
 #6
avatar+26397 
+2

Thank you, sinclairdragon428 !

 

laugh

heureka  Oct 29, 2019

1 Online Users