We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
171
2
avatar+78 

Given the function f(x)=1/3x^2-3x+12

rewrite the equation in Intercept form and use it to find the roots of the function

 Apr 26, 2019
 #1
avatar+6046 
+1

\(f(x) = \dfrac 1 3 x^2 - 3x + 12 = \\ \dfrac 1 3(x^2 -9x+36 )= \\ \dfrac 1 3\left(\left(x-\dfrac 9 2\right)^2-\dfrac{81}{4}+36\right) =\\ \dfrac 1 3\left(x-\dfrac 9 2\right)^2- \dfrac{27}{4}+12 = \\ \dfrac 1 3\left(x-\dfrac 9 2\right)^2+\dfrac{21}{4}\)

 

\(f(x)=0\\ \dfrac 1 3\left(x-\dfrac 9 2\right)^2 = -\dfrac{21}{4}\\ \left(x-\dfrac 9 2\right)^2= -\dfrac{63}{4}\\ x-\dfrac 9 2 = \pm i\sqrt{\dfrac{63}{4}}\\ x = \dfrac 9 2 \pm i\dfrac 3 2 \sqrt{7}\\ x = \dfrac 3 2\left(3\pm i \sqrt{7}\right) \)

.
 Apr 26, 2019
 #2
avatar+78 
-1

Thanks!

doorknoob  Apr 30, 2019

10 Online Users

avatar