We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
108
1
avatar

Let us have four distinct collinear points A, B, C and D on the Cartesian plane. The point C is such that AB/CB =1/2 and the point D is such that DA/BA = 3 and DB/BA = 2. If C = (0, 4), D = (4, 0) and A = (x,y) what is the value of 2x+y?

 Apr 29, 2019
 #1
avatar+23071 
+2

Let us have four distinct collinear points A, B, C and D on the Cartesian plane.

The point C is such that AB/CB =1/2 and

the point D is such that DA/BA = 3 and

DB/BA = 2.

If C = (0, 4), D = (4, 0) and A = (x,y) what is the value of 2x+y?

 

\(\text{Let $AB=BA$} \\ \text{Let $DB=BD$} \\ \text{Let $\vec{C}=\dbinom{0}{4}$ } \\ \text{Let $\vec{D}=\dbinom{4}{0}$ }\)

\(\begin{array}{|rcll|} \hline \dfrac{AB}{CB} &=& \dfrac{1}{2} \\ \mathbf{ CB } &=& \mathbf{2AB} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \dfrac{DB}{BA} &=& 2\\ \mathbf{ DB } &=& \mathbf{2AB} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline CD &=& CB + BD \\ CD &=& 2AB+2AB \\ \mathbf{ CD } &=& \mathbf{4AB} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{DA}{BA} &=& 3 \\ \mathbf{ DA } &=& \mathbf{3AB} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \dfrac{DA}{CD} &=& \dfrac{3AB}{4AB} \\ \mathbf{\lambda_A=\dfrac{DA}{CD} }&=& \mathbf{\dfrac{3}{4}} \\ \hline \end{array}\)

 

Line:

\(\begin{array}{|rcll|} \hline \vec{x} &=& \vec{D}+\lambda(\vec{C}-\vec{D}) \\ \vec{A} &=& \vec{D}+\lambda_A(\vec{C}-\vec{D}) \quad | \quad \lambda_A = \dfrac{3}{4} \\ \vec{A} &=& \vec{D}+\dfrac{3}{4}(\vec{C}-\vec{D}) \\ &=& \dbinom{4}{0}+\dfrac{3}{4}\left( \dbinom{0}{4}-\dbinom{4}{0} \right) \\\\ &=& \dbinom{4}{0}+\dfrac{3}{4} \dbinom{-4}{4} \\\\ &=& \dbinom{4}{0}+ \dbinom{\dfrac{3}{4}\cdot(-4)}{\dfrac{3}{4}\cdot 4} \\\\ &=& \dbinom{4}{0}+ \dbinom{-3} {3} \\\\ &=& \dbinom{4-3}{3} \\\\ \mathbf{\vec{A} } &=& \mathbf{ \dbinom{1}{3} } \\\\ \vec{A} &=& \dbinom{x}{y} \qquad x = 1,\ y=3 \\ 2x+y &=& 2\cdot 1 + 3 \\ \mathbf{2x+y } &=& \mathbf{ 5 } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{DB}{CD} &=& \dfrac{2AB}{4AB} \\ \mathbf{\lambda_B=\dfrac{DB}{CD} }&=& \mathbf{\dfrac{1}{2}} \\ \hline \end{array}\)

 

Line:

\(\begin{array}{|rcll|} \hline \vec{x} &=& \vec{D}+\lambda(\vec{C}-\vec{D}) \\ \vec{B} &=& \vec{D}+\lambda_B(\vec{C}-\vec{D}) \quad | \quad \lambda_B = \dfrac{1}{2} \\ \vec{B} &=& \vec{D}+\dfrac{1}{2}(\vec{C}-\vec{D}) \\ &=& \dbinom{4}{0}+\dfrac{1}{2}\left( \dbinom{0}{4}-\dbinom{4}{0} \right) \\\\ &=& \dbinom{4}{0}+\dfrac{1}{2} \dbinom{-4}{4} \\\\ &=& \dbinom{4}{0}+ \dbinom{\dfrac{1}{2}\cdot(-4)}{\dfrac{1}{2}\cdot 4} \\\\ &=& \dbinom{4}{0}+ \dbinom{-2} {2} \\\\ &=& \dbinom{4-2}{2} \\\\ \mathbf{\vec{B} } &=& \mathbf{ \dbinom{2}{2} } \\ \hline \end{array}\)

 

 

laugh

 Apr 30, 2019
edited by heureka  Apr 30, 2019
edited by heureka  Apr 30, 2019

30 Online Users

avatar
avatar
avatar
avatar
avatar