+0

0
122
5
+1704

$$\dfrac{2027!+2028!}{2028!-2029!}$$

tertre  Mar 6, 2017

#3
+91795
+5

Hi Tetre :)

$$\dfrac{2027!+2028!}{2028!-2029!}\\ =\dfrac{2027!+2027!*2028}{2028!-2028!*2029}\\ =\dfrac{2027!(1+2028)}{2028!(1-2029)}\\ =\dfrac{2027!(2029)}{2028!(-2028)}\\ =\dfrac{(2029)}{2028(-2028)}\\ =\dfrac{-2029}{2028^2}\\$$

-2029/(2028*2028) = -0.000493339791246

Melody  Mar 6, 2017
Sort:

#1
+3
0

-4055

jroozeboom  Mar 6, 2017
#2
+82925
+5

[ 2027! + 2028!]  / [ 2028! - 2029! ]

Note that we can write this as

[ (2027!) (1 + 2028) ]  / [ (2027!) ( 2028 - 2028*2029) ] =

(1 + 2028) / [ 2028 ( 1 - 2029)]

(2029) / [ 2028 (-2028)] =

-(2029) / 2028^2  =

-2029 / 4,112,784

CPhill  Mar 6, 2017
#3
+91795
+5

Hi Tetre :)

$$\dfrac{2027!+2028!}{2028!-2029!}\\ =\dfrac{2027!+2027!*2028}{2028!-2028!*2029}\\ =\dfrac{2027!(1+2028)}{2028!(1-2029)}\\ =\dfrac{2027!(2029)}{2028!(-2028)}\\ =\dfrac{(2029)}{2028(-2028)}\\ =\dfrac{-2029}{2028^2}\\$$

-2029/(2028*2028) = -0.000493339791246

Melody  Mar 6, 2017
#4
+18956
0

$$\dfrac{2027!+2028!}{2028!-2029!}$$

$$\begin{array}{|rcll|} \hline && \dfrac{2027!+2028!}{2028!-2029!} \\\\ &=& \dfrac {\frac{2028!}{2028} +2028!} {2028!-2028!\cdot 2029} \\\\ &=& \dfrac { 2028!\cdot \left( \frac{1}{2028} + 1\right) } { 2028!\cdot (1-2029) } \\\\ &=& \dfrac { \frac{1}{2028} + 1} { 1-2029 } \\\\ &=& \dfrac { \frac{1}{2028} + 1} { -2028 } \\\\ &=& \dfrac { 1+2028 } { -2028^2 } \\\\ &=& -\dfrac { 2029 } { 2028^2 } \\\\ \hline \end{array}$$

heureka  Mar 6, 2017
#5
0

(2027! + 2028!)/(2028! - 2029!) = (2026!! 2027!! + 2027!! 2028!!) / (2027!! 2028!! - 2028!! 2029!!), where !! = Double factorial. OR: (2027! + 2028!)/(2028! - 2029!) = (Γ(2028) + Γ(2029))/(Γ(2029) - Γ(2030)), where Γ = The Gamma function.

Guest Mar 6, 2017

### 11 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details