Processing math: 100%
 
+0  
 
0
537
1
avatar

The smallest distance between the origin and a point on the parabola $y=x^2-5$ can be expressed as $\sqrt{a}/b$, where $a$ is not divisible by the square of any prime. Find $a+b$.

 Mar 6, 2018
 #1
avatar
0

The distance from a point (x, y) to the origin is given by D=x2+y2.

So, if

 y=x25, thenD=x2+(x25)2=x49x2+25.

 

Now complete the square, (add and subtract (9/2)^2),

 

D=x49x2+(81/4)+(100/4)(81/4)={x2(9/2)}2+(19/4).

 

This will take its smallest value 

19/4=19/2, when x2=9/2.

 

Tiggsy

 Mar 7, 2018

2 Online Users