We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
128
1
avatar+397 

deleted.

 Jun 10, 2019
edited by sinclairdragon428  Nov 20, 2019

Best Answer 

 #1
avatar+23357 
+3

Suppose that \(2x^2 - 5x + k = 0\) is a quadratic equation with one solution for \(x\).

Express \(k\) as a common fraction.

 

\(\begin{array}{|rcll|} \hline \mathbf{2x^2 - 5x + k} &=& \mathbf{0} \\\\ x &=& \dfrac{5\pm \sqrt{25-4\cdot 2k} }{2\cdot 2} \\ \hline 25-4\cdot 2k &=& 0 \\ 25-8k &=& 0 \\ 8k &=& 25 \\ \mathbf{k} &=& \mathbf{\dfrac{25}{8}} \\ \hline \end{array}\)

 

laugh

 Jun 10, 2019
 #1
avatar+23357 
+3
Best Answer

Suppose that \(2x^2 - 5x + k = 0\) is a quadratic equation with one solution for \(x\).

Express \(k\) as a common fraction.

 

\(\begin{array}{|rcll|} \hline \mathbf{2x^2 - 5x + k} &=& \mathbf{0} \\\\ x &=& \dfrac{5\pm \sqrt{25-4\cdot 2k} }{2\cdot 2} \\ \hline 25-4\cdot 2k &=& 0 \\ 25-8k &=& 0 \\ 8k &=& 25 \\ \mathbf{k} &=& \mathbf{\dfrac{25}{8}} \\ \hline \end{array}\)

 

laugh

heureka Jun 10, 2019

25 Online Users

avatar