We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
151
1
avatar

For the graph of a certain quadratic y = ax^2 + bx + c, the vertex of the parabola is (3,7) and one of the x-intercepts is (-2,0). What is the x-coordinate of the other x-intercept?

 Jul 12, 2019

Best Answer 

 #1
avatar+23354 
+3

For the graph of a certain quadratic y = ax^2 + bx + c,
the vertex of the parabola is (3,7) and one of the x-intercepts is (-2,0).
What is the x-coordinate of the other x-intercept?

 

\(\text{Let $x-vertex = x_v = 3 $} \\ \text{Let $ x-intercept_1 = x_1 = -2 $} \\ \text{Let $ x-intercept_2 = x_2 =\ ? $} \)

 

\(\begin{array}{|rcll|} \hline \dfrac{x_1+x_2}{2} &=& x_v \\\\ \dfrac{-2+x_2}{2} &=& 3 \quad | \quad \cdot 2 \\\\ -2+x_2 &=& 6 \quad | \quad + 2 \\\\ \mathbf{ x_2 } &=& \mathbf{8} \\ \hline \end{array} \)

 

The x-coordinate of the other x-intercept is \(\mathbf{ 8 }\)

 

laugh

 Jul 12, 2019
 #1
avatar+23354 
+3
Best Answer

For the graph of a certain quadratic y = ax^2 + bx + c,
the vertex of the parabola is (3,7) and one of the x-intercepts is (-2,0).
What is the x-coordinate of the other x-intercept?

 

\(\text{Let $x-vertex = x_v = 3 $} \\ \text{Let $ x-intercept_1 = x_1 = -2 $} \\ \text{Let $ x-intercept_2 = x_2 =\ ? $} \)

 

\(\begin{array}{|rcll|} \hline \dfrac{x_1+x_2}{2} &=& x_v \\\\ \dfrac{-2+x_2}{2} &=& 3 \quad | \quad \cdot 2 \\\\ -2+x_2 &=& 6 \quad | \quad + 2 \\\\ \mathbf{ x_2 } &=& \mathbf{8} \\ \hline \end{array} \)

 

The x-coordinate of the other x-intercept is \(\mathbf{ 8 }\)

 

laugh

heureka Jul 12, 2019

8 Online Users