We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
173
1
avatar

A degree 4 polynomial with integer coefficients has zeros −1−2i and 1, with 1 a zero of multiplicity 2. If the coefficient of x^4 is 1, 
then the polynomial is

 Mar 12, 2019
edited by Guest  Mar 12, 2019

Best Answer 

 #1
avatar+7761 
+1

\(f(x) = (x - 1)^2 (x - (-1-2i))(x - r) \text{ for some } r \in \mathbb C\)

But the polynomial has integer coefficients, so \(r = \overline{-1-2i} = -1+2i\).

\(f(x) = (x^2 - 2x + 1) (x^2 + 2x + 5) \\f(x)= x^4+2x^2-8x+5\)

.
 Mar 12, 2019
 #1
avatar+7761 
+1
Best Answer

\(f(x) = (x - 1)^2 (x - (-1-2i))(x - r) \text{ for some } r \in \mathbb C\)

But the polynomial has integer coefficients, so \(r = \overline{-1-2i} = -1+2i\).

\(f(x) = (x^2 - 2x + 1) (x^2 + 2x + 5) \\f(x)= x^4+2x^2-8x+5\)

MaxWong Mar 12, 2019

13 Online Users

avatar
avatar