+0  
 
0
79
1
avatar+206 

The inverse of \(f(x) = \frac{2x-1}{x+5}\) may be written in the form \(f^{-1}(x)=\frac{ax+b}{cx+d}\), where \(a\)\(b\)\(c\), and \(d\) are real numbers. Find \(a/c\).

mathtoo  Mar 1, 2018

Best Answer 

 #1
avatar+12266 
+2

y = 2x-1/x+5         First, solve for 'x'    

  yx+5y -2x = -1

yx - 2x= -5y -1

x(y-2)  = -5y-1

x = (-5y-1)/(y-2)    then switch the x's and y's to have the inverse f^-1 (x)

y = (-5x-1)/(x-2)             a = -5 c= 1      a/c -5/1 = -5

ElectricPavlov  Mar 1, 2018
edited by ElectricPavlov  Mar 1, 2018
Sort: 

1+0 Answers

 #1
avatar+12266 
+2
Best Answer

y = 2x-1/x+5         First, solve for 'x'    

  yx+5y -2x = -1

yx - 2x= -5y -1

x(y-2)  = -5y-1

x = (-5y-1)/(y-2)    then switch the x's and y's to have the inverse f^-1 (x)

y = (-5x-1)/(x-2)             a = -5 c= 1      a/c -5/1 = -5

ElectricPavlov  Mar 1, 2018
edited by ElectricPavlov  Mar 1, 2018

20 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy