We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
238
1
avatar+814 

The inverse of \(f(x) = \frac{2x-1}{x+5}\) may be written in the form \(f^{-1}(x)=\frac{ax+b}{cx+d}\), where \(a\)\(b\)\(c\), and \(d\) are real numbers. Find \(a/c\).

 Mar 1, 2018

Best Answer 

 #1
avatar+18133 
+2

y = 2x-1/x+5         First, solve for 'x'    

  yx+5y -2x = -1

yx - 2x= -5y -1

x(y-2)  = -5y-1

x = (-5y-1)/(y-2)    then switch the x's and y's to have the inverse f^-1 (x)

y = (-5x-1)/(x-2)             a = -5 c= 1      a/c -5/1 = -5

 Mar 1, 2018
edited by ElectricPavlov  Mar 1, 2018
 #1
avatar+18133 
+2
Best Answer

y = 2x-1/x+5         First, solve for 'x'    

  yx+5y -2x = -1

yx - 2x= -5y -1

x(y-2)  = -5y-1

x = (-5y-1)/(y-2)    then switch the x's and y's to have the inverse f^-1 (x)

y = (-5x-1)/(x-2)             a = -5 c= 1      a/c -5/1 = -5

ElectricPavlov Mar 1, 2018
edited by ElectricPavlov  Mar 1, 2018

34 Online Users

avatar
avatar
avatar
avatar