+0  
 
0
832
1
avatar+818 

The inverse of \(f(x) = \frac{2x-1}{x+5}\) may be written in the form \(f^{-1}(x)=\frac{ax+b}{cx+d}\), where \(a\)\(b\)\(c\), and \(d\) are real numbers. Find \(a/c\).

 Mar 1, 2018

Best Answer 

 #1
avatar+37158 
0

y = 2x-1/x+5         First, solve for 'x'    

  yx+5y -2x = -1

yx - 2x= -5y -1

x(y-2)  = -5y-1

x = (-5y-1)/(y-2)    then switch the x's and y's to have the inverse f^-1 (x)

y = (-5x-1)/(x-2)             a = -5 c= 1      a/c -5/1 = -5

 Mar 1, 2018
edited by ElectricPavlov  Mar 1, 2018
 #1
avatar+37158 
0
Best Answer

y = 2x-1/x+5         First, solve for 'x'    

  yx+5y -2x = -1

yx - 2x= -5y -1

x(y-2)  = -5y-1

x = (-5y-1)/(y-2)    then switch the x's and y's to have the inverse f^-1 (x)

y = (-5x-1)/(x-2)             a = -5 c= 1      a/c -5/1 = -5

ElectricPavlov Mar 1, 2018
edited by ElectricPavlov  Mar 1, 2018

5 Online Users

avatar
avatar