We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
27
2
avatar

Completely factor x^8 - y^8.

 Dec 3, 2019
 #1
avatar+15 
0

x8-y

difference of cubes

(x2-y2)(x4+x2y2+y4

 

first polynomial can be factored further

(x+y)(x-y)    (x4+x2y2+y4)

 

 

next polynomial can be factored further

x+ 2x2y2-x2y2+y4

x4+2x2y2+y4- x2y2

first three terms factorable by perfect square

(x2+y2)2 - x2y2

(x2+y2)- (xy)2

difference of squares again

(x2+y2+xy)(x2+y2-xy)

 

first polynomials factored form and second polynomials factored form put together

(x+y)(x-y)(x2+y2+xy)(x2+y2-xy)

 

sorry if formatting is weird

 Dec 3, 2019
 #2
avatar+23575 
+1

Completely factor x^8 - y^8.

 

\(\begin{array}{|rcll|} \hline \mathbf{x^8 - y^8} &=& \left( x^\frac{8}{2} - y^\frac{8}{2} \right)\left( x^\frac{8}{2} + y^\frac{8}{2} \right) \\ &=& \left( x^4 - y^4 \right)\left( x^4 + y^4 \right) \\ &=& \left( x^\frac{4}{2} - y^\frac{4}{2} \right)\left( x^\frac{4}{2} + y^\frac{4}{2} \right)\left( x^4 + y^4 \right) \\ &=& \left( x^2 - y^2 \right)\left( x^2 + y^2 \right) \left( x^4 + y^4 \right)\\ &=& \left( x^\frac{2}{2} - y^\frac{2}{2} \right)\left( x^\frac{2}{2} + y^\frac{2}{2} \right) \left( x^2 + y^2 \right) \left( x^4 + y^4 \right) \\ \mathbf{x^8 - y^8} &=&\mathbf{ (x - y)(x + y)\left( x^2 + y^2 \right) \left( x^4 + y^4 \right) } \\ \hline \end{array} \)

 

laugh

 Dec 3, 2019

12 Online Users