Let n and k be positive integers such that
Find the smallest possible value of n.
nCk / nCk+1 = 4 / 11
nCk = n! / [ k! · (n - k)! ] nCk+1 = n! / [ (k + 1)! · ( n - (k + 1) )! ] ---> nCk+1 = n! / [ (k + 1)! · (n - k - 1)! ]
nCk / nCk+1 = n! / [ k! · (n - k)! ] / [ n! / [ (k + 1)! · (n - k - 1)! ] ]
= [ n! · (k + 1)! · ( n - k - 1) )! ] / [ k! · (n - k)! · n! ]
= (k + 1) / (n - k)
But (k + 1) / (n - k) = 4 / 11
---> k + 1 = 4 ---> k = 3
---> n - k = 11 ---> n - 3 = 11 ---> n = 14