We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
57
3
avatar

1. If $f(x) = x^2 - 1$ and $g(x) = x + 7,$ evaluate $f(g(7)) + g(f(3)).$

2. Suppose $f(x)=\frac{3}{2-x}$. If $g(x)=\frac{1}{f^{-1}(x)}+9$, find $g(3)$.

3. For what value of  does the equation  represent a circle of radius 6?

4. The graph of $y=ax^2+bx+c$ is given below, where $a$, $b$, and $c$ are integers. Find $a-b+c$.  

/img/upload/313e0014cf41d608bb928627/71b9b16f-b06a-4115-99e8-8d1219eab4f3.png

 Jun 15, 2019
 #1
avatar+721 
+2

f(g(7))+g(f(3)). Seems complex at first.

However, we can evaluate g(7), which is 7+7 = 14, and now we can find f(14)

Also, we can evaluate f(3), which is 3^2-1=8, and now we can find g(8).

f(14)=14^2-1=195 and g(8)=8+7=15.

Now we have 195+15 which equals 210.

 

You are very welcome!

:P

 Jun 15, 2019
 #2
avatar+8406 
+3

2.  Suppose  \(f(x)=\frac{3}{2-x}\) .  If  \(g(x)=\frac{1}{f^{-1}(x)}+9\) ,  find  \(g(3)\) .

 

Let's find   f-1(x)   by setting  y  =  f(x)   and solving for  x .

 

\(y\ =\ \frac{3}{2-x}\\~\\ y(2-x)\ =\ 3\qquad\text{and}\qquad x\neq2\\~\\ 2-x\ =\ \frac3y\\~\\ -x\ =\ -2+\frac3y\\~\\ x\ =\ 2-\frac3y\)

 

So we know...

 

\(f^{-1}(x)\ =\ 2-\frac3x\)

 

And we can substitute this in for   f-1(x)  in the equation for  g(x)

 

\(g(x)\ =\ \dfrac{1}{f^{-1}(x)}+9\\~\\ g(x)\ =\ \dfrac{1}{2-\frac3x}+9\\~\\ g(3)\ =\ \dfrac{1}{2-\frac33}+9\\~\\ g(3)\ =\ \dfrac{1}{2-1}+9\\~\\ g(3)\ =\ 1+9\\~\\ g(3)\ =\ 10\)_

 Jun 15, 2019
 #3
avatar+102459 
+1
 Jun 16, 2019

8 Online Users

avatar