deleted.
\(\frac{24t^3}{15t^4}*\frac{5t^8}{3t^6}\)
Simplify \(\frac{24t^3}{15t^4}\)
Both 24 and 15 have a common factor of 3
\(\frac{24t^3}{15t^4} = \frac{8t^3}{5t^4}\)
\(\frac{8t^3}{5t^4}*\frac{5t^8}{3t^6}\)
Apply exponent rule: \(\frac{x^a}{x^b} = \) 1/x^b-a
\(\frac{8}{5t}\)
Continue
\(\frac{8}{5t}*\frac{5t^8}{3t^6}\)
Apply exponent rule: \(\frac{x^a}{x^b} = \) x^a-b
\( \frac{5t^2}{3}\)
Continue
\(\frac{8}{5t} * \frac{5t^2}{3}\)
\(\frac{8*5t^2}{5t*3}\)
\(\frac{8t^2}{t*3}\)
\(\frac{8t}{3}\)
Your answer would be \(\frac{8t}{3}\)
Hope this helps ;P
EmeraldWonder, there are a couple of small errors in your work at the end because \(\frac{8\,*\,5t^2}{5t\,*\,3}\ \neq\ \frac{8t^2}{3}\)
Here is another way to work this problem:
\(\ \phantom{=\quad}\dfrac{24t^3}{15t^4}\cdot \dfrac{5t^8}{3t^6}\)
\(=\quad\dfrac{24\,\cdot\,t^3\,\cdot\,5\,\cdot\,t^8}{15\,\cdot\,t^4\,\cdot\,3\,\cdot\,t^6}\)
\(=\quad\dfrac{120\,\cdot\,t^3\,\cdot\,t^8}{45\,\cdot\,t^4\,\cdot\,t^6}\) because we can multiply numbers in any order and 24 · 5 = 120 and 15 · 3 = 45
\(=\quad\dfrac{120\,\cdot\,t^{11}}{45\,\cdot\,t^{10}}\) because t3 · t8 = t t t · t t t t t t t t = t(3 + 8) = t11 and t4 · t6 = t(4 + 6) = t10
\(=\quad\dfrac{120\,\cdot\,t^{10}\cdot\,t}{45\,\cdot\,t^{10}}\) because t11 = t t t t t t t t t t t = t10 · t
\(=\quad\dfrac{120\,\cdot\,t}{45}\) when t ≠ 0 because we can cancel the common factor of t10 in the numerator and denominator.
\(=\quad\dfrac{8t}{3}\) because \(\frac{120}{45}\) reduces to \(\frac83\)_
I forgot to remove the square at the end. I redited my work to put the correct end result, thank you for correcting me, I see my error
;P