Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
805
1
avatar

Determine the sum of all prime numbers p for which there exists no integer solution in $x$ to the congruence 3(6x+1)4(modp).

 

 

Determine the sum of all prime numbers $p$ for which there exists no integer solution in $x$ to the congruence $3(6x+1)\equiv 4\pmod p$.

 Dec 21, 2018
 #1
avatar+6252 
+2

3(6x+1)4(modp)18x+34(modp)18x1(modp)332x1modpIt should be clear any integer x will cause 18x0(mod2) and 18x0(mod3)there will be an integer solution for all other primes2+3=5

.
 Dec 21, 2018

0 Online Users