+0  
 
0
63
2
avatar

1. Find the value of  \(\sqrt{a}\cdot\sqrt{a+6}\cdot\sqrt{b}\cdot\sqrt{b+6} for (a,b)=(7,91)\).

 

2. What is the smallest positive integer \(k\) such that  \(\sqrt[4]{98 \cdot k}\) is an integer?

 

3. (Just a hint please, I don't know why but I got 192) \(Simplify (\sqrt[3]{3}+\sqrt[3]{24}+\sqrt[3]{192})^3\)

 

Thanks.

Guest Aug 5, 2018
edited by Guest  Aug 5, 2018
 #1
avatar
+1

3)

 

Simplify the following:
(3^(1/3) + 24^(1/3) + 192^(1/3))^3

24^(1/3) = (2^3×3)^(1/3) = 2 3^(1/3):
(3^(1/3) + 2 3^(1/3) + 192^(1/3))^3

192^(1/3) = (2^6×3)^(1/3) = 2^2 3^(1/3):
(3^(1/3) + 2 3^(1/3) + 2^2 3^(1/3))^3

2^2 = 4:
(3^(1/3) + 2 3^(1/3) + 4 3^(1/3))^3

Add like terms. 3^(1/3) + 2 3^(1/3) + 4 3^(1/3) = 7 3^(1/3):
(7 3^(1/3))^3

Multiply each exponent in 7 3^(1/3) by 3:
7^3×3^(3/3)

3/3 = 1:
7^3×3

7^3 = 7×7^2:
7×7^2×3

7^2 = 49:
7×49×3

7×49 = 343:
343×3

343×3 = 1029:
 
 =1029

 

2)

Since 98 = 2 x 7^2, it, therefore, follows that if you multiply 98 by: 2^3 x 7^2 =392 you will have:

(98 x 392)^1/4 =14. Therefore k=392

 

1) 

 

Sqrt(7) x Sqrt(7 + 6) x sqrt(91) x sqrt(91 + 6) =

 

Simplify the following:
sqrt(7) sqrt(7 + 6) sqrt(91) sqrt(91 + 6)

91 + 6 = 97:
sqrt(7) sqrt(7 + 6) sqrt(91) sqrt(97 ) 

7 + 6 = 13:
sqrt(7) sqrt(13 ) sqrt(91) sqrt(97)

sqrt(7) sqrt(13) sqrt(91) sqrt(97) = sqrt(7×13×91×97):
sqrt(7×13×91×97)

7×13 = 91:
sqrt(91×91×97)

91×91 = 8281:
sqrt(8281×97)

8281×97 = 803257:
 sqrt(803257 ) 

sqrt(803257) = sqrt(91^2×97) = 91 sqrt(97):

 =91 sqrt(97)=896.246

Guest Aug 5, 2018
 #2
avatar
+1

thanks for explaining in details! smiley

Guest Aug 5, 2018

13 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.