+0  
 
0
53
1
avatar

Geometrically speaking, a parabola is defined as the set of points that are the same distance from a given point and a given line. The point is called the focus of the parabola and the line is called the directrix of the parabola.

Suppose \(\mathcal{P}\) is a parabola with focus \((4,3)\) and directrix \(y=1\). The point \((8,6)\) is on \(\mathcal{P}\) because \((8,6)\) is 5 units away from both the focus and the directrix.

If we write the equation whose graph is \(\mathcal{P}\) in the form \(y=ax^2+bx+c\), then what is \(a+b+c\)?

 Apr 13, 2020
 #1
avatar+21004 
+1

A graphing form for a parabola is:  y - k  =  a(x - h)2 where (h, k) is the vertex.

The vertex is midway between the focus and the directrix.

Since the focus is (4, 3) and the directrix is  y = 1, the vertex is at (4, 2).

 

Therefore, the graphing form is:  y - 2  =  a(x - 4)2.

To find a, let's put the value of (8, 6) into this formula:  6 - 2  =  a(8 - 4)2 

                                                                                            4  =  a(4)2   

                                                                                            4  =  a·16

                                                                                            a  =  4/16   --->   a = ¼

So, the equation is:  y - 2  =  ¼(x - 4)2 

Multiplying out:         y - 2  =  ¼(x2 - 8x + 16)

                                 y - 2  =  ¼x2 - 2x + 4

                                       y  =  ¼x2 - 2x + 6

 

a = ¼   b = -2  c = 6

 Apr 13, 2020

34 Online Users

avatar
avatar
avatar
avatar