+0  
 
0
67
1
avatar

when a passenger jet begins its descent to the airport, it is 3900 feet from the ground. Its angle of descent is 6 degrees.

a) what is the plane's ground distance to the airport?

b) how far must the plane fly to reach the runway?

Guest Mar 7, 2018

Best Answer 

 #1
avatar+7048 
+2

Point  A  is the current location of the plane.

Point  B  is the point on the ground directly under the plane.

Point  C  is the location of the airport.

 

m∠BAC   =   90° - 6°   =   84°

 

a)

plane's ground distance to the airport =  BC

tan 84°  =   BC / AB

tan 84°  =   BC / 3900

3900 tan 84°  =  BC

BC  ≈  37106.021    feet

 

b)

distance between plane and runway   =   AC

cos 84°   =   AB / AC

cos 84°   =   3900 / AC

AC cos 84°  =  3900

AC  =  3900 / cos 84°

AC  ≈  37310.412    feet

hectictar  Mar 7, 2018
Sort: 

1+0 Answers

 #1
avatar+7048 
+2
Best Answer

Point  A  is the current location of the plane.

Point  B  is the point on the ground directly under the plane.

Point  C  is the location of the airport.

 

m∠BAC   =   90° - 6°   =   84°

 

a)

plane's ground distance to the airport =  BC

tan 84°  =   BC / AB

tan 84°  =   BC / 3900

3900 tan 84°  =  BC

BC  ≈  37106.021    feet

 

b)

distance between plane and runway   =   AC

cos 84°   =   AB / AC

cos 84°   =   3900 / AC

AC cos 84°  =  3900

AC  =  3900 / cos 84°

AC  ≈  37310.412    feet

hectictar  Mar 7, 2018

25 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy