+0  
 
0
302
2
avatar

Line RS passes through points R (5, 3) and S (-1, 0). 

Line PQ is parallel to line RS and passes through points P (3, -1) and Q (-2, y). 

What are the coordinates of point Q?

Guest Apr 14, 2015

Best Answer 

 #2
avatar+19632 
+8

Line RS passes through points R (5, 3) and S (-1, 0). 

Line PQ is parallel to line RS and passes through points P (3, -1) and Q (-2, y). 

What are the coordinates of point Q ?

$$\small{\text{Line PQ is parallel to line RS - cross product }}
\boxed{|(\vec{S}-\vec{R}) \times (\vec{Q}-\vec{P})| = 0}\\ \\
\left|
\left[
\binom{-1}{0}-\binom{5}{3}
\right]
\times
\left[
\binom{-2}{y}-\binom{3}{-1}
\right]
\right| = 0\\\\
\left|
\binom{-6}{-3} \times \binom{-5}{y+1}
\right| = 0\\\\
(-6)\cdot(y+1)-(-3)\cdot(-5) = 0\\
(-6)\cdot(y+1)-15 = 0\\
(-6)\cdot(y+1)=15\\\\
y+1=-\frac{15}{6}\\\\
y=-\frac{15}{6}-1\\\\
y=-\frac{21}{6}\\\\
y= -\frac{7}{2}\\\\
y=-3.5\\\\
\boxed{\vec{Q}=\binom{-2}{-3.5}}$$

heureka  Apr 14, 2015
 #1
avatar+981 
+5

The lines are parralel. This means they have the same gradient. 

First we find the gradient of RS.

The formula for gradient is: m = (y{2}-y{1})/(x{2}-x{1}).

 y{2}=0, y{1}=3, x{2}=-1, x{1}=5 

 

$${\mathtt{m}} = {\frac{\left({\mathtt{0}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}{\left({\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,-\,}}{\mathtt{5}}\right)}}$$

$${\mathtt{m}} = {\frac{\left(-{\mathtt{3}}\right)}{\left(-{\mathtt{6}}\right)}}$$

$${\mathtt{m}} = {\frac{{\mathtt{1}}}{{\mathtt{2}}}}$$

Now we can sub our gradient into the equation for line PQ's gradient.

m = (y{2}-y{1})/(x{2}-x{1})

$${\frac{{\mathtt{1}}}{{\mathtt{2}}}} = {\frac{\left({\mathtt{y}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{\left({\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}}$$ (keep in mind the y corresponds to point Q)

$${\frac{{\mathtt{1}}}{{\mathtt{2}}}} = {\frac{\left({\mathtt{y}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{\left(-{\mathtt{5}}\right)}}$$ Now we solve for y.

$$-{\mathtt{5}} = {\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{y}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)$$

$$-{\mathtt{5}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}$$

$$-{\mathtt{7}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}$$

$${\mathtt{y}} = -{\mathtt{3.5}}$$

We can check this by substituting y into the equation. Does (-3.5 --1)/(-5) = 1/2? 

This is our y coordinate for point Q.

So point Q = (-2, -3.5)

Hope this helps :)

zacismyname  Apr 14, 2015
 #2
avatar+19632 
+8
Best Answer

Line RS passes through points R (5, 3) and S (-1, 0). 

Line PQ is parallel to line RS and passes through points P (3, -1) and Q (-2, y). 

What are the coordinates of point Q ?

$$\small{\text{Line PQ is parallel to line RS - cross product }}
\boxed{|(\vec{S}-\vec{R}) \times (\vec{Q}-\vec{P})| = 0}\\ \\
\left|
\left[
\binom{-1}{0}-\binom{5}{3}
\right]
\times
\left[
\binom{-2}{y}-\binom{3}{-1}
\right]
\right| = 0\\\\
\left|
\binom{-6}{-3} \times \binom{-5}{y+1}
\right| = 0\\\\
(-6)\cdot(y+1)-(-3)\cdot(-5) = 0\\
(-6)\cdot(y+1)-15 = 0\\
(-6)\cdot(y+1)=15\\\\
y+1=-\frac{15}{6}\\\\
y=-\frac{15}{6}-1\\\\
y=-\frac{21}{6}\\\\
y= -\frac{7}{2}\\\\
y=-3.5\\\\
\boxed{\vec{Q}=\binom{-2}{-3.5}}$$

heureka  Apr 14, 2015

16 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.